Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix.

S Eisenberg, E Sehayek, T Olivecrona… - The Journal of …, 1992 - Am Soc Clin Investig
S Eisenberg, E Sehayek, T Olivecrona, I Vlodavsky
The Journal of clinical investigation, 1992Am Soc Clin Investig
Lipoprotein lipase enhances binding at 4 degrees C of human plasma lipoproteins
(chylomicrons, VLDL, intermediate density lipoprotein, LDL, and HDL3) to cultured
fibroblasts and hepG-2 cells and to extracellular matrix. Heparinase treatment of cells and
matrix reduces the lipoprotein lipase enhanced binding by 90-95%. Lipoprotein lipase
causes only a minimal effect on the binding of lipoproteins to heparan sulfate deficient
mutant Chinese hamster ovary cells while it promotes binding to wild type cells that is …
Lipoprotein lipase enhances binding at 4 degrees C of human plasma lipoproteins (chylomicrons, VLDL, intermediate density lipoprotein, LDL, and HDL3) to cultured fibroblasts and hepG-2 cells and to extracellular matrix. Heparinase treatment of cells and matrix reduces the lipoprotein lipase enhanced binding by 90-95%. Lipoprotein lipase causes only a minimal effect on the binding of lipoproteins to heparan sulfate deficient mutant Chinese hamster ovary cells while it promotes binding to wild type cells that is abolished after heparinase treatment. With 125I-LDL, lipoprotein lipase also enhances uptake and proteolytic degradation at 37 degrees C by normal human skin fibroblasts but has no effect in heparinase-treated normal cells or in LDL receptor-negative fibroblasts. These observations prove that lipoprotein lipase causes, predominantly, binding of lipoproteins to heparan sulfate at cell surfaces and in extracellular matrix rather than to receptors. This interaction brings the lipoproteins into close proximity with cell surfaces and may promote metabolic events that occur at the cell surface, including facilitated transfer to cellular receptors.
Images
The Journal of Clinical Investigation