[HTML][HTML] MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/IκBα negative feedback loop

L Jiang, C Lin, L Song, J Wu, B Chen… - The Journal of …, 2021 - Am Soc Clin Investig
L Jiang, C Lin, L Song, J Wu, B Chen, Z Ying, L Fang, X Yan, M He, J Li, M Li
The Journal of clinical investigation, 2021Am Soc Clin Investig
Constitutive activation of NF-κB is a frequent event in human cancers, playing important
roles in cancer development and progression. In nontransformed cells, NF-κB activation is
tightly controlled by IκBs. IκBs bind NF-κB in the cytoplasm, preventing it from translocating
to the nucleus to modulate gene expression. Stimuli that activate NF-κB signaling trigger IκB
degradation, enabling nuclear translocation of NF-κB. Among the genes regulated by NF-κB
are those encoding the IκBs, providing a negative feedback loop that limits NF-κB activity …
Constitutive activation of NF-κB is a frequent event in human cancers, playing important roles in cancer development and progression. In nontransformed cells, NF-κB activation is tightly controlled by IκBs. IκBs bind NF-κB in the cytoplasm, preventing it from translocating to the nucleus to modulate gene expression. Stimuli that activate NF-κB signaling trigger IκB degradation, enabling nuclear translocation of NF-κB. Among the genes regulated by NF-κB are those encoding the IκBs, providing a negative feedback loop that limits NF-κB activity. How transformed cells override this NF-κB/IκB negative feedback loop remains unclear. Here, we report in human glioma cell lines that microRNA-30e* (miR-30e*) directly targets the IκBα 3ι-UTR and suppresses IκBα expression. Overexpression of miR-30e* in human glioma cell lines led to hyperactivation of NF-κB and enhanced expression of NF-κB–regulated genes, which promoted glioma cell invasiveness in in vitro assays and in an orthotopic xenotransplantation model. These effects of miR-30e* were shown to be clinically relevant, as miR-30e* was found to be upregulated in primary human glioma cells and correlated with malignant progression and poor survival. Hence, miR-30e* provides an epigenetic mechanism that disrupts the NF-κB/IκBα loop and may represent a new therapeutic target and prognostic marker.
The Journal of Clinical Investigation