Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal‐derived factor‐1‐CXCR4 and hepatocyte growth factor‐c‐met axes …

BR Son, LA Marquez‐Curtis, M Kucia… - Stem …, 2006 - academic.oup.com
BR Son, LA Marquez‐Curtis, M Kucia, M Wysoczynski, AR Turner, J Ratajczak…
Stem cells, 2006academic.oup.com
Human mesenchymal stem cells (MSCs) are increasingly being considered in cell‐based
therapeutic strategies for regeneration of various organs/tissues. However, the signals
required for their homing and recruitment to injured sites are not yet fully understood.
Because stromal‐derived factor (SDF)‐1 and hepatocyte growth factor (HGF) become up‐
regulated during tissue/organ damage, in this study we examined whether these factors
chemoattract ex vivo‐expanded MSCs derived from bone marrow (BM) and umbilical cord …
Abstract
Human mesenchymal stem cells (MSCs) are increasingly being considered in cell‐based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal‐derived factor (SDF)‐1 and hepatocyte growth factor (HGF) become up‐regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo‐expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c‐met, the cognate receptors of SDF‐1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)‐MMP, matrix‐degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM‐ or CB‐derived MSCs for up to 15–18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c‐met, and 3) MMPs. We found that for up to 15–18 passages, both BM‐ and CB‐derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE‐cadherin; 2) express CXCR4 and c‐met receptors and are strongly attracted by SDF‐1 and HGF gradients; 3) express MMP‐2 and MT1‐MMP transcripts and proteins; and 4) are chemo‐invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF‐1‐CXCR4 and HGF‐c‐met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.
Oxford University Press