Regulation of Toll-like receptor–mediated inflammatory response by complement in vivo

X Zhang, Y Kimura, C Fang, L Zhou… - Blood, The Journal …, 2007 - ashpublications.org
X Zhang, Y Kimura, C Fang, L Zhou, G Sfyroera, JD Lambris, RA Wetsel, T Miwa, WC Song
Blood, The Journal of the American Society of Hematology, 2007ashpublications.org
Toll-like receptors (TLRs) and complement are 2 components of innate immunity that are
critical for first-line host defense and elicitation of adaptive immune responses. Many
pathogen-associated molecular patterns activate both TLR and complement, but whether
and how these 2 systems, when coactivated in vivo, interact with each other has not been
well studied. We demonstrate here a widespread regulation of TLR signaling by
complement in vivo. The TLR ligands lipopolysacharride (TLR4), zymosan (TLR2/6), and …
Toll-like receptors (TLRs) and complement are 2 components of innate immunity that are critical for first-line host defense and elicitation of adaptive immune responses. Many pathogen-associated molecular patterns activate both TLR and complement, but whether and how these 2 systems, when coactivated in vivo, interact with each other has not been well studied. We demonstrate here a widespread regulation of TLR signaling by complement in vivo. The TLR ligands lipopolysacharride (TLR4), zymosan (TLR2/6), and CpG oligonucleotide (TLR9) caused, in a complement-dependent manner, strikingly elevated plasma interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and IL-1β, and/or decreased plasma IL-12 levels in mice deficient in the membrane complement inhibitor decay-accelerating factor (DAF). A similar outcome was observed in wild-type mice cotreated with the TLR ligands and cobra venom factor, a potent complement activator. The regulatory effect of complement on TLR-induced cytokine production in vivo was mediated by the anaphylatoxin receptors C5aR and C3aR. Additionally, changes in lipopolysaccharide (LPS)–induced cytokine production in DAF-deficient mice correlated with increased mitogen-activated protein kinase and nuclear factor-κB activation in the spleen. These results reveal a strong interaction between complement and TLR signaling in vivo and suggest a novel mechanism by which complement promotes inflammation and modulates adaptive immunity.
ashpublications.org