[PDF][PDF] Activating alleles of JAK3 in acute megakaryoblastic leukemia

DK Walters, T Mercher, TL Gu, T O'Hare, JW Tyner… - Cancer cell, 2006 - cell.com
DK Walters, T Mercher, TL Gu, T O'Hare, JW Tyner, M Loriaux, VL Goss, KA Lee, CA Eide…
Cancer cell, 2006cell.com
Tyrosine kinases are aberrantly activated in numerous malignancies, including acute
myeloid leukemia (AML). To identify tyrosine kinases activated in AML, we developed a
screening strategy that rapidly identifies tyrosine-phosphorylated proteins using mass
spectrometry. This allowed the identification of an activating mutation (A572V) in the JAK3
pseudokinase domain in the acute megakaryoblastic leukemia (AMKL) cell line CMK.
Subsequent analysis identified two additional JAK3 alleles, V722I and P132T, in AMKL …
Summary
Tyrosine kinases are aberrantly activated in numerous malignancies, including acute myeloid leukemia (AML). To identify tyrosine kinases activated in AML, we developed a screening strategy that rapidly identifies tyrosine-phosphorylated proteins using mass spectrometry. This allowed the identification of an activating mutation (A572V) in the JAK3 pseudokinase domain in the acute megakaryoblastic leukemia (AMKL) cell line CMK. Subsequent analysis identified two additional JAK3 alleles, V722I and P132T, in AMKL patients. JAK3A572V, JAK3V722I, and JAK3P132T each transform Ba/F3 cells to factor-independent growth, and JAK3A572V confers features of megakaryoblastic leukemia in a murine model. These findings illustrate the biological importance of gain-of-function JAK3 mutations in leukemogenesis and demonstrate the utility of proteomic approaches to identifying clinically relevant mutations.
cell.com