[HTML][HTML] Genome sequence of the human malaria parasite Plasmodium falciparum

MJ Gardner, N Hall, E Fung, O White, M Berriman… - Nature, 2002 - nature.com
MJ Gardner, N Hall, E Fung, O White, M Berriman, RW Hyman, JM Carlton, A Pain
Nature, 2002nature.com
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of
malaria, and kills more than one million African children annually. Here we report an
analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear
genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A+ T)-
rich genome sequenced to date. Genes involved in antigenic variation are concentrated in
the subtelomeric regions of the chromosomes. Compared to the genomes of free-living …
Abstract
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.
nature.com