Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in …

MF Rauch, SR Hynes, J Bertram… - European Journal of …, 2009 - Wiley Online Library
MF Rauch, SR Hynes, J Bertram, A Redmond, R Robinson, C Williams, H Xu, JA Madri…
European Journal of Neuroscience, 2009Wiley Online Library
Angiogenesis precedes recovery following spinal cord injury and its extent correlates with
neural regeneration, suggesting that angiogenesis may play a role in repair. An important
precondition for studying the role of angiogenesis is the ability to induce it in a controlled
manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural
progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional
vascular networks in vivo in a subcutaneous model. We sought to test whether a similar …
Abstract
Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to the formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two‐component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant + ECs or implant + NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a fourfold increase in functional vessels compared with the lesion control, implant alone or implant + NPCs groups and a twofold increase in functional vessels over the implant + ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for the formation of the blood–spinal cord barrier. No other groups have shown positive staining for the blood–spinal cord barrier in the injury epicenter. This work provides a novel method to induce angiogenesis following spinal cord injury and a foundation for studying its role in repair.
Wiley Online Library