A hierarchy of temporal receptive windows in human cortex

U Hasson, E Yang, I Vallines, DJ Heeger… - Journal of …, 2008 - Soc Neuroscience
U Hasson, E Yang, I Vallines, DJ Heeger, N Rubin
Journal of Neuroscience, 2008Soc Neuroscience
Real-world events unfold at different time scales and, therefore, cognitive and neuronal
processes must likewise occur at different time scales. We present a novel procedure that
identifies brain regions responsive to sensory information accumulated over different time
scales. We measured functional magnetic resonance imaging activity while observers
viewed silent films presented forward, backward, or piecewise-scrambled in time. Early
visual areas (eg, primary visual cortex and the motion-sensitive area MT+) exhibited high …
Real-world events unfold at different time scales and, therefore, cognitive and neuronal processes must likewise occur at different time scales. We present a novel procedure that identifies brain regions responsive to sensory information accumulated over different time scales. We measured functional magnetic resonance imaging activity while observers viewed silent films presented forward, backward, or piecewise-scrambled in time. Early visual areas (e.g., primary visual cortex and the motion-sensitive area MT+) exhibited high response reliability regardless of disruptions in temporal structure. In contrast, the reliability of responses in several higher brain areas, including the superior temporal sulcus (STS), precuneus, posterior lateral sulcus (LS), temporal parietal junction (TPJ), and frontal eye field (FEF), was affected by information accumulated over longer time scales. These regions showed highly reproducible responses for repeated forward, but not for backward or piecewise-scrambled presentations. Moreover, these regions exhibited marked differences in temporal characteristics, with LS, TPJ, and FEF responses depending on information accumulated over longer durations (∼36 s) than STS and precuneus (∼12 s). We conclude that, similar to the known cortical hierarchy of spatial receptive fields, there is a hierarchy of progressively longer temporal receptive windows in the human brain.
Soc Neuroscience