[HTML][HTML] Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

J Luo, P Ho, L Steinman, T Wyss-Coray - Journal of neuroinflammation, 2008 - Springer
Journal of neuroinflammation, 2008Springer
Background Experimental autoimmune encephalomyelitis is a widely used animal model to
understand not only multiple sclerosis but also basic principles of immunity. The disease is
scored typically by observing signs of paralysis, which do not always correspond with
pathological changes. Methods Experimental autoimmune encephalomyelitis was induced
in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-
luc). Bioluminescence in the brain and spinal cord was measured non-invasively in living …
Background
Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes.
Methods
Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc). Bioluminescence in the brain and spinal cord was measured non-invasively in living mice. Mice were sacrificed at different time points to evaluate clinical and pathological changes. The correlation between bioluminescence and clinical and pathological EAE was statistically analyzed by Pearson correlation analysis.
Results
Bioluminescence from the brain and spinal cord correlates strongly with severity of clinical disease and a number of pathological changes in the brain in EAE. Bioluminescence at early time points also predicts severity of disease.
Conclusion
These results highlight the potential use of bioluminescence imaging to monitor neuroinflammation for rapid drug screening and immunological studies in EAE and suggest that similar approaches could be applied to other animal models of autoimmune and inflammatory disorders.
Springer