IRF6 in development and disease: a mediator of quiescence and differentiation

CM Bailey, MJC Hendrix - Cell Cycle, 2008 - Taylor & Francis
CM Bailey, MJC Hendrix
Cell Cycle, 2008Taylor & Francis
Post utero development of the mammary gland is a complex developmental process
characterized by states of rapid cell proliferation (branching morphogenesis) followed by
functional differentiation (lactation) and the consequent apoptosis (involution) of the
secretory mammary epithelial cell. This process is cyclical, such that involution returns the
mammary gland to a near-virgin-like state capable of responding to morphogenic cues with
each consecutive pregnancy. Importantly, many of the regulatory processes which oversee …
Post utero development of the mammary gland is a complex developmental process characterized by states of rapid cell proliferation (branching morphogenesis) followed by functional differentiation (lactation) and the consequent apoptosis (involution) of the secretory mammary epithelial cell. This process is cyclical, such that involution returns the mammary gland to a near-virgin-like state capable of responding to morphogenic cues with each consecutive pregnancy. Importantly, many of the regulatory processes which oversee mammary gland development are corrupted or otherwise compromised during the development of breast cancer. For example, Interferon Regulatory Factor 6 (IRF6) is a novel protein with growth inhibitory properties that was initially identified in mammary epithelial cells through its interaction with maspin, a known tumor suppressor in normal breast tissue. Recent findings from our laboratory suggest that IRF6 functions synergistically with maspin to regulate mammary epithelial cell differentiation by acting on the cell cycle. This perspective focuses on the possible involvement of IRF6 in promoting differentiation by regulating exit from the cell cycle and entry into the G(0) phase of cellular quiescence, and how these new findings shed light on normal mammary gland development and the initiation and progression of breast cancer.
Taylor & Francis Online