Ion channels in spinal cord astrocytes in vitro. II. Biophysical and pharmacological analysis of two Na+ current types

H Sontheimer, SG Waxman - Journal of neurophysiology, 1992 - journals.physiology.org
Journal of neurophysiology, 1992journals.physiology.org
1. Na+ currents expressed in astrocytes cultured from spinal cord were studied by whole cell
patch-clamp recording. Two subtypes of astrocytes, pancake and stellate cells, were
morphologically differentiated and showed expression of Na+ channels at densities that are
unusually high for glial cells (2-8 channels/microns2) and comparable to cultured neurons.
2. Na+ currents in stellate and pancake astrocytes were comparable to neuronal Na+
currents with regard to Na (+)-current activation (tau m) and inactivation (tau h) time …
1. Na+ currents expressed in astrocytes cultured from spinal cord were studied by whole cell patch-clamp recording. Two subtypes of astrocytes, pancake and stellate cells, were morphologically differentiated and showed expression of Na+ channels at densities that are unusually high for glial cells (2-8 channels/microns2) and comparable to cultured neurons. 2. Na+ currents in stellate and pancake astrocytes were comparable to neuronal Na+ currents with regard to Na(+)-current activation (tau m) and inactivation (tau h) time constants, which were equally fast in both astrocyte types. However, they differed with respect to voltage dependence of activation, and current-voltage (I-V) curves were approximately 10 mV more positive in stellate cells (-11.1 +/- 5.6 mV, mean +/- SD) than in pancake cells (19.7 +/- 4.5 mV). Steady-state activation (m infinity curves) was 16 mV more negative in pancake (mean V1/2 = -48.8 mV) than in stellate cells (mean V1/2 = -32.7 mV). 3. Steady-state inactivation (h infinity curves) of Na+ currents was distinctly different in the two astrocyte types. In stellate astrocytes h infinity curves had midpoints close to -65 mV (-64.6 +/- 6.5 mV), similar to most cultured neurons. In pancake astrocytes h infinity-curves were approximately 25 mV more negative, with midpoints close to -85 mV (84.5 +/- 9.5 mV). 4. The two forms of Na+ currents were additionally distinguishable by their sensitivity to tetrodotoxin (TTX). Na+ currents in stellate astrocytes were highly TTX sensitive [half-maximal inhibition (Kd) = 5.7 nM] whereas Na+ currents in pancake astrocytes were relatively TTX resistant, requiring 100- to 1,000-fold higher concentrations for blockage (Kd = 1,007 nM). 5. Na+ currents were fit by the Hodgkin-Huxley (HH) model. In pancake astrocytes, as in squid gigant axons, Na(+)-current kinetics could be well described with an m3h model, whereas in stellate astrocytes Na+ currents were better described with higher-order power terms for activation (m). On average, best fits were obtained using an m4h model. 6. Pancake astrocytes were capable of generating action-potential (AP)-like responses under current clamp whereas stellate astrocytes were not. The h infinity curve for APs shows that membrane potentials more negative than -70 mV are required to allow these responses to occur.(ABSTRACT TRUNCATED AT 400 WORDS)
American Physiological Society