NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis

SA Eccles, A Massey, FI Raynaud, SY Sharp, G Box… - Cancer research, 2008 - AACR
SA Eccles, A Massey, FI Raynaud, SY Sharp, G Box, M Valenti, L Patterson…
Cancer research, 2008AACR
We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide
heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (K d= 1.7
nmol/L) and proliferation of human tumor cells with GI50 values of approximately 2 to 40
nmol/L, inducing G1-G2 arrest and apoptosis. Activity is independent of NQO1/DT-
diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular
signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was …
Abstract
We describe the biological properties of NVP-AUY922, a novel resorcinylic isoxazole amide heat shock protein 90 (HSP90) inhibitor. NVP-AUY922 potently inhibits HSP90 (Kd = 1.7 nmol/L) and proliferation of human tumor cells with GI50 values of approximately 2 to 40 nmol/L, inducing G1-G2 arrest and apoptosis. Activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. NVP-AUY922 was glucuronidated less than previously described isoxazoles, yielding higher drug levels in human cancer cells and xenografts. Daily dosing of NVP-AUY922 (50 mg/kg i.p. or i.v.) to athymic mice generated peak tumor levels at least 100-fold above cellular GI50. This produced statistically significant growth inhibition and/or regressions in human tumor xenografts with diverse oncogenic profiles: BT474 breast tumor treated/control, 21%; A2780 ovarian, 11%; U87MG glioblastoma, 7%; PC3 prostate, 37%; and WM266.4 melanoma, 31%. Therapeutic effects were concordant with changes in pharmacodynamic markers, including induction of HSP72 and depletion of ERBB2, CRAF, cyclin-dependent kinase 4, phospho-AKT/total AKT, and hypoxia-inducible factor-1α, determined by Western blot, electrochemiluminescent immunoassay, or immunohistochemistry. NVP-AUY922 also significantly inhibited tumor cell chemotaxis/invasion in vitro, WM266.4 melanoma lung metastases, and lymphatic metastases from orthotopically implanted PC3LN3 prostate carcinoma. NVP-AUY922 inhibited proliferation, chemomigration, and tubular differentiation of human endothelial cells and antiangiogenic activity was reflected in reduced microvessel density in tumor xenografts. Collectively, the data show that NVP-AUY922 is a potent, novel inhibitor of HSP90, acting via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. NVP-AUY922 has entered phase I clinical trials. [Cancer Res 2008;68(8):2850–60]
AACR