Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles.

WS Pear, JC Aster, ML Scott, RP Hasserjian… - The Journal of …, 1996 - rupress.org
WS Pear, JC Aster, ML Scott, RP Hasserjian, B Soffer, J Sklar, D Baltimore
The Journal of experimental medicine, 1996rupress.org
Notch is a highly conserved transmembrane protein that is involved in cell fate decisions
and is found in organisms ranging from Drosophila to humans. A human homologue of
Notch, TAN1, was initially identified at the chromosomal breakpoint of a subset of T-cell
lymphoblastic leukemias/lymphomas containing at (7; 9) chromosomal translocation;
however, its role in oncogenesis has been unclear. Using a bone marrow reconstitution
assay with cells containing retrovirally transduced TAN1 alleles, we analyzed the oncogenic …
Notch is a highly conserved transmembrane protein that is involved in cell fate decisions and is found in organisms ranging from Drosophila to humans. A human homologue of Notch, TAN1, was initially identified at the chromosomal breakpoint of a subset of T-cell lymphoblastic leukemias/lymphomas containing a t(7;9) chromosomal translocation; however, its role in oncogenesis has been unclear. Using a bone marrow reconstitution assay with cells containing retrovirally transduced TAN1 alleles, we analyzed the oncogenic potential of both nuclear and extranuclear forms of truncated TAN1 in hematopoietic cells. Although the Moloney leukemia virus long terminal repeat drives expression in most hematopoietic cell types, retroviruses encoding either form of the TAN1 protein induced clonal leukemias of exclusively immature T cell phenotypes in approximately 50% of transplanted animals. All tumors overexpressed truncated TAN1 of the size and subcellular localization predicted from the structure of the gene. These results show that TAN1 is an oncoprotein and suggest that truncation and overexpression are important determinants of transforming activity. Moreover, the murine tumors caused by TAN1 in the bone marrow transplant model are very similar to the TAN1-associated human tumors and suggest that TAN1 may be specifically oncotropic for T cells.
rupress.org