Apolipoprotein C-III: understanding an emerging cardiovascular risk factor

EMM Ooi, PHR Barrett, DC Chan, GF Watts - Clinical science, 2008 - portlandpress.com
Clinical science, 2008portlandpress.com
The concurrence of visceral obesity, insulin resistance and dyslipidaemia comprises the
concept of the metabolic syndrome. The metabolic syndrome is an escalating problem in
developed and developing societies that tracks with the obesity epidemic. Dyslipidaemia in
the metabolic syndrome is potently atherogenic and, hence, is a major risk factor for CVD
(cardiovascular disease) in these subjects. It is globally characterized by
hypertriglyceridaemia, near normal LDL (low-density lipoprotein)-cholesterol and low …
The concurrence of visceral obesity, insulin resistance and dyslipidaemia comprises the concept of the metabolic syndrome. The metabolic syndrome is an escalating problem in developed and developing societies that tracks with the obesity epidemic. Dyslipidaemia in the metabolic syndrome is potently atherogenic and, hence, is a major risk factor for CVD (cardiovascular disease) in these subjects. It is globally characterized by hypertriglyceridaemia, near normal LDL (low-density lipoprotein)-cholesterol and low plasma HDL (high-density lipoprotein)-cholesterol. ApoC-III (apolipoprotein C-III), an important regulator of lipoprotein metabolism, is strongly associated with hypertriglyceridaemia and the progression of CVD. ApoC-III impairs the lipolysis of TRLs [triacylglycerol (triglyceride)-rich lipoproteins] by inhibiting lipoprotein lipase and the hepatic uptake of TRLs by remnant receptors. In the circulation, apoC-III is associated with TRLs and HDL, and freely exchanges among these lipoprotein particle systems. However, to fully understand the complex physiology and pathophysiology requires the application of tracer methodology and mathematical modelling. In addition, experimental evidence shows that apoC-III may also have a direct role in atherosclerosis. In the metabolic syndrome, increased apoC-III concentration, resulting from hepatic overproduction of VLDL (very-LDL) apoC-III, is strongly associated with delayed catabolism of triacylglycerols and TRLs. Several therapies pertinent to the metabolic syndrome, such as PPAR (peroxisome-proliferator-activated receptor) agonists and statins, can regulate apoC-III transport in the metabolic syndrome. Regulating apoC-III metabolism may be an important new therapeutic approach to managing dyslipidaemia and CVD risk in the metabolic syndrome.
portlandpress.com