Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor

YF Dong, DY Soung, EM Schwarz… - Journal of cellular …, 2006 - Wiley Online Library
YF Dong, DY Soung, EM Schwarz, RJ O'Keefe, H Drissi
Journal of cellular physiology, 2006Wiley Online Library
We investigated the molecular mechanisms underlying canonical Wnt‐mediated regulation
of chondrocyte hypertrophy using chick upper sternal chondrocytes. Replication competent
avian sarcoma (RCAS) viral over‐expression of Wnt8c and Wnt9a, upregulated type X
collagen (col10a1) and Runx2 mRNA expression thereby inducing chondrocyte
hypertrophy. Wnt8c and Wnt9a strongly inhibited mRNA levels of Sox9 and type II collagen
(col2a1). Wnt8c further enhanced canonical bone morphogenetic proteins (BMP‐2)‐induced …
Abstract
We investigated the molecular mechanisms underlying canonical Wnt‐mediated regulation of chondrocyte hypertrophy using chick upper sternal chondrocytes. Replication competent avian sarcoma (RCAS) viral over‐expression of Wnt8c and Wnt9a, upregulated type X collagen (col10a1) and Runx2 mRNA expression thereby inducing chondrocyte hypertrophy. Wnt8c and Wnt9a strongly inhibited mRNA levels of Sox9 and type II collagen (col2a1). Wnt8c further enhanced canonical bone morphogenetic proteins (BMP‐2)‐induced expression of Runx2 and col10a1 while Wnt8c and Wnt9a inhibited TGF‐β‐induced expression of Sox9 and col2a1. Over‐expression of β‐catenin mimics the effect of Wnt8c and Wnt9a by upregulating Runx2, col10a1, and alkaline phosphatase (AP) mRNA levels while it inhibits col2a1 transcription. Western blot analysis shows that Wnt8c and β‐catenin also induces Runx2 protein levels in chondrocytes. Thus, our results indicate that activation of the canonical β‐catenin Wnt signaling pathway induces chondrocyte hypertrophy and maturation. We further investigated the effects of β‐catenin‐TCF/Lef on Runx2 promoter. Co‐transfection of lymphoid enhancer factor (Lef1) and β‐catenin in chicken upper sternal chondrocytes together with deletion constructs of the Runx2 promoter shows that the proximal region spanning the first 128 base pairs of this promoter is responsible for the Wnt‐mediated induction of Runx2. Mutation of the TCF/Lef binding site in the −128 fragment of the Runx2 promoter resulted in loss of its responsiveness to β‐catenin. Additionally, gel‐shift assay analyses determined the DNA/protein interaction of the TCF/Lef binding sites on the Runx2 promoter. Finally, our site‐directed mutagenesis data demonstrated that the Runx2 site on type X collagen promoter is required for canonical Wnt induction of col10a1. Altogether we demonstrate that Wnt/β‐catenin signaling is regulated by TGF‐β and BMP‐2 in chick upper sternal chondrocytes, and mediates chondrocyte hypertrophy at least partly through activation of Runx2 which in turn may induce col10a1 expression. J. Cell. Physiol. © 2006 Wiley‐Liss, Inc.
Wiley Online Library