Combining proteasome inhibition with TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) for cancer therapy

TJ Sayers, WJ Murphy - Cancer Immunology, Immunotherapy, 2006 - Springer
TJ Sayers, WJ Murphy
Cancer Immunology, Immunotherapy, 2006Springer
Apoptosis has an essential role in embryogenesis, adult tissue homeostasis and cellular
responses to stressful stimuli. Therefore, increased apoptosis is involved in the
pathogenesis of various ischaemic, degenerative and immune disorders. Conversely,
genetic aberration that results in a reduction or abolition of apoptosis can promote
tumorigenesis and underlie the resistance of cancer cells to various genotoxic anticancer
agents. Therefore, a detailed knowledge of the control of apoptotic pathways could aid in the …
Abstract
Apoptosis has an essential role in embryogenesis, adult tissue homeostasis and cellular responses to stressful stimuli. Therefore, increased apoptosis is involved in the pathogenesis of various ischaemic, degenerative and immune disorders. Conversely, genetic aberration that results in a reduction or abolition of apoptosis can promote tumorigenesis and underlie the resistance of cancer cells to various genotoxic anticancer agents. Therefore, a detailed knowledge of the control of apoptotic pathways could aid in the rational design of effective therapeutics for a variety of human diseases including cancer. One major way to promote apoptosis involves signaling through members of the tumor necrosis factor (TNF) superfamily. On binding to their appropriate receptors, some TNF family members can promote caspase activation and apoptosis. Early studies on TNF indicated that a limited number of tumor cell lines could be induced to undergo apoptosis on exposure to TNF. Another member of the TNF family Fas ligand (FasL) is also known to induce apoptosis in a variety of tumor cells. Although TNF and FasL can efficiently induce apoptosis in a limited number of tumor cells, administration of either of these agents is associated with extreme toxicity. This toxicity has precluded further development of either TNF or FasL for cancer therapy. However, within the last 8 years another member of the TNF family, TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) has been characterized, which induces apoptosis of a wider range of cancer cells than either TNF or FasL. Surprisingly, most normal non-transformed cells are quite resistant to the apoptotic effects of Apo2L/TRAIL. This selective toxicity for cancer cells is the basis for the current enthusiasm for Apo2L/TRAIL as a potential novel anticancer therapy. In this symposium report, we provide a brief overview of Apo2L/TRAIL, its receptors and their signaling pathways. We discuss findings on the antitumor effects of Apo2L/TRAIL alone or in combination with radiotherapy or chemotherapy. In addition, we present recent information from our groups concerning the possible therapeutic benefits of combining Apo2L/TRAIL with the proteasome inhibitor bortezomib.
Springer