Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling

Y Le Marchand-Brustel, P Gual… - Biochemical Society …, 2003 - portlandpress.com
Y Le Marchand-Brustel, P Gual, T Gremeaux, T Gonzalez, R Barres, JF Tanti
Biochemical Society Transactions, 2003portlandpress.com
Insulin resistance, when combined with impaired insulin secretion, contributes to the
development of type 2 diabetes. Insulin resistance is characterized by a decrease in the
insulin effect on glucose transport in muscle and adipose tissue. Tyrosine phosphorylation of
IRS-1 (insulin receptor substrate 1) and its binding to PI 3-kinase (phosphoinositide 3-
kinase) are critical events in the insulin signalling cascade leading to insulin-stimulated
glucose transport. Various studies have implicated lipids as a cause of insulin resistance in …
Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterized by a decrease in the insulin effect on glucose transport in muscle and adipose tissue. Tyrosine phosphorylation of IRS-1 (insulin receptor substrate 1) and its binding to PI 3-kinase (phosphoinositide 3-kinase) are critical events in the insulin signalling cascade leading to insulin-stimulated glucose transport. Various studies have implicated lipids as a cause of insulin resistance in muscle. Elevated plasma fatty acid concentrations are associated with reduced insulin-stimulated glucose transport activity as a consequence of altered insulin signalling through PI 3-kinase. Modification of IRS-1 by serine phosphorylation could be one of the mechanisms leading to a decrease in IRS-1 tyrosine phosphorylation, PI 3-kinase activity and glucose transport. Recent findings demonstrate that non-esterified fatty acids, as well as other factors such as tumour necrosis factor α, hyperinsulinaemia and cellular stress, increase the serine phosphorylation of IRS-1 and identified Ser307 as one of the phosphorylated sites. Moreover, several kinases able to phosphorylate this serine residue have been identified. These exciting results suggest that Ser307 phosphorylation is a possible hallmark of insulin resistance in biologically insulin-responsive cells or tissues. Identification of IRS-1 kinases could enable rational drug design in order to selectively inhibit the activity of the relevant enzymes and generate a novel class of therapeutic agents for type 2 diabetes.
portlandpress.com