mtDNA mutations increase tumorigenicity in prostate cancer

JA Petros, AK Baumann… - Proceedings of the …, 2005 - National Acad Sciences
JA Petros, AK Baumann, E Ruiz-Pesini, MB Amin, CQ Sun, J Hall, SD Lim, MM Issa…
Proceedings of the National Academy of Sciences, 2005National Acad Sciences
Mutations in the mtDNA have been found to fulfill all of the criteria expected for pathogenic
mutations causing prostate cancer. Focusing on the cytochrome oxidase subunit I (COI)
gene, we found that 11–12% of all prostate cancer patients harbored COI mutations that
altered conserved amino acids (mean conservation index= 83%), whereas< 2% of no-
cancer controls and 7.8% of the general population had COI mutations, the latter altering
less conserved amino acids (conservation index= 71%). Four conserved prostate cancer …
Mutations in the mtDNA have been found to fulfill all of the criteria expected for pathogenic mutations causing prostate cancer. Focusing on the cytochrome oxidase subunit I (COI) gene, we found that 11–12% of all prostate cancer patients harbored COI mutations that altered conserved amino acids (mean conservation index = 83%), whereas <2% of no-cancer controls and 7.8% of the general population had COI mutations, the latter altering less conserved amino acids (conservation index = 71%). Four conserved prostate cancer COI mutations were found in multiple independent patients on different mtDNA backgrounds. Three other tumors contained heteroplasmic COI mutations, one of which created a stop codon. This latter tumor also contained a germ-line ATP6 mutation. Thus, both germ-line and somatic mtDNA mutations contribute to prostate cancer. Many tumors have been found to produce increased reactive oxygen species (ROS), and mtDNA mutations that inhibit oxidative phosphorylation can increase ROS production and thus contribute to tumorigenicity. To determine whether mutant tumors had increased ROS and tumor growth rates, we introduced the pathogenic mtDNA ATP6 T8993G mutation into the PC3 prostate cancer cell line through cybrid transfer and tested for tumor growth in nude mice. The resulting mutant (T8993G) cybrids were found to generate tumors that were 7 times larger than the wild-type (T8993T) cybrids, whereas the wild-type cybrids barely grew in the mice. The mutant tumors also generated significantly more ROS. Therefore, mtDNA mutations do play an important role in the etiology of prostate cancer.
National Acad Sciences