Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro.

PF Davies, A Remuzzi, EJ Gordon… - Proceedings of the …, 1986 - National Acad Sciences
PF Davies, A Remuzzi, EJ Gordon, CF Dewey Jr, MA Gimbrone Jr
Proceedings of the National Academy of Sciences, 1986National Acad Sciences
The effects of hemodynamic forces upon vascular endothelial cell turnover were studied by
exposing contact-inhibited confluent cell monolayers to shear stresses of varying amplitude
in either laminar or turbulent flow. Laminar shear stresses (range, 8-15 dynes/cm2; 24 hr)
induced cell alignment in the direction of flow without initiating the cell cycle. In contrast,
turbulent shear stresses as low as 1.5 dynes/cm2 for as short a period as 3 hr stimulated
substantial endothelial DNA synthesis in the absence of cell alignment, discernible cell …
The effects of hemodynamic forces upon vascular endothelial cell turnover were studied by exposing contact-inhibited confluent cell monolayers to shear stresses of varying amplitude in either laminar or turbulent flow. Laminar shear stresses (range, 8-15 dynes/cm2; 24 hr) induced cell alignment in the direction of flow without initiating the cell cycle. In contrast, turbulent shear stresses as low as 1.5 dynes/cm2 for as short a period as 3 hr stimulated substantial endothelial DNA synthesis in the absence of cell alignment, discernible cell retraction, or cell loss. The results of these in vitro experiments suggest that in atherosclerotic lesion-prone regions of the vascular system, unsteady blood flow characteristics, rather than the magnitude of wall shear stress per se, may be the major determinant of hemodynamically induced endothelial cell turnover.
National Acad Sciences