Genetics of O-Antigen Biosynthesis inPseudomonas aeruginosa

HL Rocchetta, LL Burrows, JS Lam - Microbiology and Molecular …, 1999 - Am Soc Microbiol
HL Rocchetta, LL Burrows, JS Lam
Microbiology and Molecular Biology Reviews, 1999Am Soc Microbiol
Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated
bacterial products that enable colonization and establishment of infection within a host.
Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their
protective role against serum-mediated lysis and their endotoxic properties. The most
heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region
which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of …
Summary
Pathogenic bacteria produce an elaborate assortment of extracellular and cell-associated bacterial products that enable colonization and establishment of infection within a host. Lipopolysaccharide (LPS) molecules are cell surface factors that are typically known for their protective role against serum-mediated lysis and their endotoxic properties. The most heterogeneous portion of LPS is the O antigen or O polysaccharide, and it is this region which confers serum resistance to the organism. Pseudomonas aeruginosa is capable of concomitantly synthesizing two types of LPS referred to as A band and B band. The A-band LPS contains a conserved O polysaccharide region composed of d-rhamnose (homopolymer), while the B-band O-antigen (heteropolymer) structure varies among the 20 O serotypes of P. aeruginosa. The genes coding for the enzymes that direct the synthesis of these two O antigens are organized into two separate clusters situated at different chromosomal locations. In this review, we summarize the organization of these two gene clusters to discuss how A-band and B-band O antigens are synthesized and assembled by dedicated enzymes. Examples of unique proteins required for both A-band and B-band O-antigen synthesis and for the synthesis of both LPS and alginate are discussed. The recent identification of additional genes within the P. aeruginosa genome that are homologous to those in the A-band and B-band gene clusters are intriguing since some are able to influence O-antigen synthesis. These studies demonstrate that P. aeruginosa represents a unique model system, allowing studies of heteropolymeric and homopolymeric O-antigen synthesis, as well as permitting an examination of the interrelationship of the synthesis of LPS molecules and other virulence determinants.
American Society for Microbiology