STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels

MA Spassova, J Soboloff, LP He… - Proceedings of the …, 2006 - National Acad Sciences
MA Spassova, J Soboloff, LP He, W Xu, MA Dziadek, DL Gill
Proceedings of the National Academy of Sciences, 2006National Acad Sciences
Receptor-induced Ca2+ signals are key to the function of all cells and involve release of
Ca2+ from endoplasmic reticulum (ER) stores, triggering Ca2+ entry through plasma
membrane (PM)“store-operated channels”(SOCs). The identity of SOCs and their coupling to
store depletion remain molecular and mechanistic mysteries. The single transmembrane-
spanning Ca2+-binding protein, STIM1, is necessary in this coupling process and is
proposed to function as an ER Ca2+ sensor to provide the trigger for SOC activation. Here …
Receptor-induced Ca2+ signals are key to the function of all cells and involve release of Ca2+ from endoplasmic reticulum (ER) stores, triggering Ca2+ entry through plasma membrane (PM) “store-operated channels” (SOCs). The identity of SOCs and their coupling to store depletion remain molecular and mechanistic mysteries. The single transmembrane-spanning Ca2+-binding protein, STIM1, is necessary in this coupling process and is proposed to function as an ER Ca2+ sensor to provide the trigger for SOC activation. Here we reveal that, in addition to being an ER Ca2+ sensor, STIM1 functions within the PM to control operation of the Ca2+ entry channel itself. Increased expression levels of STIM1 correlate with a gain in function of Ca2+ release-activated Ca2+ (CRAC) channel activity. Point mutation of the N-terminal EF hand transforms the CRAC channel current (ICRAC) into a constitutively active, Ca2+ store-independent mode. Mutants in the EF hand and cytoplasmic C terminus of STIM1 alter operational parameters of CRAC channels, including pharmacological profile and inactivation properties. Last, Ab externally applied to the STIM1 N-terminal EF hand blocks both ICRAC in hematopoietic cells and SOC-mediated Ca2+ entry in HEK293 cells, revealing that STIM1 has an important functional presence within the PM. The results reveal that, in addition to being an ER Ca2+ sensor, STIM1 functions within the PM to exert control over the operation of SOCs. As a cell surface signaling protein, STIM1 represents a key pharmacological target to control fundamental Ca2+-regulated processes including secretion, contraction, metabolism, cell division, and apoptosis.
National Acad Sciences