Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia

L Vallières, S Rivest - Endocrinology, 1999 - academic.oup.com
L Vallières, S Rivest
Endocrinology, 1999academic.oup.com
Abstract Interleukin-6 (IL-6) is a proinflammatory cytokine that plays multiple roles in the
central nervous system during infections and injuries. Although this molecule is capable of
stimulating the release of ACTH and glucocorticoids, it has been demonstrated that a single
injection of IL-6 fails to activate the paraventricular nucleus (PVN) neurons that control the
hypothalamic-pituitary-adrenal axis. The observation that IL-6 receptor (IL-6R) is up-
regulated in the brain during endotoxemia led us to hypothesize that prior induction of IL-6R …
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that plays multiple roles in the central nervous system during infections and injuries. Although this molecule is capable of stimulating the release of ACTH and glucocorticoids, it has been demonstrated that a single injection of IL-6 fails to activate the paraventricular nucleus (PVN) neurons that control the hypothalamic-pituitary-adrenal axis. The observation that IL-6 receptor (IL-6R) is up-regulated in the brain during endotoxemia led us to hypothesize that prior induction of IL-6R synthesis could amplify the effect of circulating IL-6 on the neuroendocrine response. Rats received a first iv injection of either bacterial lipopolysaccharide (LPS; 5 μg) or vehicle solution. After a 6-h waiting period, they received a second iv injection of either recombinant rat IL-6 or vehicle solution and were killed 1 h thereafter. Using in situ hybridization, we observed that IL-6R was barely expressed in the PVN under basal conditions, but was rapidly produced in response to LPS. IL-6 itself was also able to induce the synthesis of its own receptor along cerebral blood vessels, and this effect extended to several parenchymal structures, including the PVN, when the cytokine was administrated after LPS. In agreement with our hypothesis, we found that IL-6 injected in LPS-pretreated rats stimulated PVN neurons, as revealed by the expression of CRF primary transcript and c-fos messenger RNA, an immediate early gene used as a marker of cellular activation. A significant increase in plasma corticosterone levels was also found in animals that received iv IL-6 injection after being pretreated 6 h before with the very low dose of LPS. The fact that IL-6 alone or injected after LPS treatment was unable to induce cyclooxygenase-2 synthesis is an argument in favor of a PG-independent mechanism. The relative contribution of IL-6 in stimulating CRF expression in the PVN and neural activity throughout the brain during endotoxemia was also investigated in IL-6-deficient mice after an ip injection of LPS. The endotoxin induced similar c-fos and CRF expression patterns in knockout and wild-type mice, but the expression levels were generally higher and/or lasted longer in wild-type animals. Taken together, physiological changes that may include the induction of IL-6R synthesis seem to be necessary for IL-6 to activate PVN neurons. Moreover, although IL-6 does not appear essential during the early phases of endotoxemia, this cytokine is required during the later phases to prolong the activation of neural cells throughout the brain and to maintain CRF expression in the PVN neurons that control the hypothalamic-pituitary-adrenal axis.
Oxford University Press