Molecular cloning of a potential proteinase activated receptor.

S Nystedt, K Emilsson, C Wahlestedt… - Proceedings of the …, 1994 - National Acad Sciences
S Nystedt, K Emilsson, C Wahlestedt, J Sundelin
Proceedings of the National Academy of Sciences, 1994National Acad Sciences
A DNA sequence encoding a G-protein-coupled receptor was isolated from a mouse
genomic library. The predicted protein is similar in structure to the thrombin receptor and has
a similar activation mechanism. When expressed in Xenopus laevis oocytes, the receptor
was activated by low concentrations of trypsin (EC 3.4. 21.4) and by a peptide (SLIGRL)
derived from the receptor sequence, but was not activated by thrombin (EC 3.4. 21.5).
Trypsin failed to activate a mutant receptor in which the presumed cleavage site Arg-34-Ser …
A DNA sequence encoding a G-protein-coupled receptor was isolated from a mouse genomic library. The predicted protein is similar in structure to the thrombin receptor and has a similar activation mechanism. When expressed in Xenopus laevis oocytes, the receptor was activated by low concentrations of trypsin (EC 3.4.21.4) and by a peptide (SLIGRL) derived from the receptor sequence, but was not activated by thrombin (EC 3.4.21.5). Trypsin failed to activate a mutant receptor in which the presumed cleavage site Arg-34-Ser-35 was changed to an Arg-Pro sequence. The agonist peptide (SLIGRL) activated equally well mutant and wild-type receptors. Northern blot analysis demonstrated receptor transcripts in highly vascularized tissues such as kidney, small intestine, and stomach. Because this, to our knowledge, is the second example, besides the thrombin receptor, of a proteolytically activated seven-transmembrane G-protein-coupled receptor, we have provisionally named it proteinase activated receptor 2.
National Acad Sciences