Survival, maturation, and function of CD11c− and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines

N Kohrgruber, N Halanek, M Gröger… - The Journal of …, 1999 - journals.aai.org
N Kohrgruber, N Halanek, M Gröger, D Winter, K Rappersberger, M Schmitt-Egenolf
The Journal of Immunology, 1999journals.aai.org
Two types of dendritic cells (DC) are circulating in human blood and can be identified by
their differential expression of the myeloid Ag CD11c. In this study, we show that CD11c−
peripheral blood (PB)-DC correspond to plasmacytoid DC of lymphoid tissue not only by
their surface Ag expression profile but, more impressively, by their peculiar ultramorphology.
We also demonstrate that CD11c− and CD11c+ DC differ in the quality of their response to
and in their requirement for certain cytokines. Freshly isolated CD11c− cells depend on IL-3 …
Abstract
Two types of dendritic cells (DC) are circulating in human blood and can be identified by their differential expression of the myeloid Ag CD11c. In this study, we show that CD11c− peripheral blood (PB)-DC correspond to plasmacytoid DC of lymphoid tissue not only by their surface Ag expression profile but, more impressively, by their peculiar ultramorphology. We also demonstrate that CD11c− and CD11c+ DC differ in the quality of their response to and in their requirement for certain cytokines. Freshly isolated CD11c− cells depend on IL-3 for survival and use autocrine or exogenous TNF-α as maturation signal, leading to the appearance of a highly dendritic phenotype, the up-regulation and redistribution of MHC class II from lysosomal compartments to the plasma membrane, the increased expression of costimulatory molecules, and the switch from a high Ag-processing to a low Ag-processing/potent accessory cell mode. Surprisingly, IL-4 efficiently killed freshly isolated CD11c− PB-DC, but did not impair the viability of CD11c+ PB-DC and, together with GM-CSF, induced maturation of these cells. A direct functional comparison revealed that neo-Ag-modified and subsequently matured CD11c− but to a lesser extent CD11c+ DC were able to prime naive Ag-specific CD4+ T cells. Our findings show that two diverse DC types respond to certain T cell-derived cytokines in a differential manner and, thus, suggest that suppression or activation of functionally diverse DC types may be a novel mechanism for the regulation of the quantity and quality of immune responses.
journals.aai.org