p27Kip1 is expressed transiently in developing myotomes and enhances myogenesis.

SD Zabludoff, M Csete, R Wagner, X Yu… - Cell growth & …, 1998 - europepmc.org
SD Zabludoff, M Csete, R Wagner, X Yu, BJ Wold
Cell growth & differentiation: the molecular biology journal of the …, 1998europepmc.org
Vertebrate skeletal muscle development is characterized by tight coupling of muscle
differentiation with cell cycle arrest in G1/G0. Key regulators of G1 progression are the G1
cyclin-dependent kinases, their positive regulators, the G1 cyclins, and their negative
regulators, the cyclin-dependent kinase inhibitors (CDIs). Here we show that p27Kip1
protein, a G1 CDI, is expressed in a prominent but transient wave in the developing
myotomes of the mouse embryo. We relate its expression to expression of MyoD and …
Vertebrate skeletal muscle development is characterized by tight coupling of muscle differentiation with cell cycle arrest in G1/G0. Key regulators of G1 progression are the G1 cyclin-dependent kinases, their positive regulators, the G1 cyclins, and their negative regulators, the cyclin-dependent kinase inhibitors (CDIs). Here we show that p27Kip1 protein, a G1 CDI, is expressed in a prominent but transient wave in the developing myotomes of the mouse embryo. We relate its expression to expression of MyoD and myogenin proteins, which are determination and differentiation class myogenic regulatory factors, respectively. Functional assays showed that ectopic p27 expression can powerfully enhance the efficiency of MyoD-initiated muscle differentiation in cell culture. When considered together with the myotomal expression patterns of p18, p21, and p57, these results suggest a model in which p27 acts as a" trigger" CDI while myoblasts are exiting the cell cycle and initiating differentiation. At later times, when p27 protein has been down-regulated, it is proposed that accumulation of p18, p21, and p57 maintain the differentiated myocytes in a postmitotic state.
europepmc.org