Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Regulation of murine fetal-placental calcium metabolism by the calcium-sensing receptor.
C S Kovacs, … , C E Seidman, H M Kronenberg
C S Kovacs, … , C E Seidman, H M Kronenberg
Published June 15, 1998
Citation Information: J Clin Invest. 1998;101(12):2812-2820. https://doi.org/10.1172/JCI2940.
View: Text | PDF
Research Article

Regulation of murine fetal-placental calcium metabolism by the calcium-sensing receptor.

  • Text
  • PDF
Abstract

The calcium-sensing receptor (CaSR) regulates PTH secretion to control the extracellular calcium concentration in adults, but its role in fetal life is unknown. We used CaSR gene knockout mice to investigate the role of the CaSR in regulating fetal calcium metabolism. The normal calcium concentration in fetal blood is raised above the maternal level, an increase that depends upon PTH-related peptide (PTHrP). Heterozygous (+/-) and homozygous (-/-) disruption of the CaSR caused a further increase in the fetal calcium level. This increase was modestly blunted by concomitant disruption of the PTHrP gene and completely reversed by disruption of the PTH/ PTHrP receptor gene. Serum levels of PTH and 1, 25-dihydroxyvitamin D were substantially increased above the normal low fetal levels by disruption of the CaSR. The free deoxypyridinoline level was increased in the amniotic fluid (urine) of CaSR-/- fetuses; this result suggests that fetal bone resorption is increased. Placental calcium transfer was reduced, and renal calcium excretion was increased, by disruption of the CaSR. These studies indicate that the CaSR normally suppresses PTH secretion in the presence of the normal raised (and PTHrP-dependent) fetal calcium level. Disruption of the CaSR causes fetal hyperparathyroidism and hypercalcemia, with additional effects on placental calcium transfer.

Authors

C S Kovacs, C L Ho-Pao, J L Hunzelman, B Lanske, J Fox, J G Seidman, C E Seidman, H M Kronenberg

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts