Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells.
J A Halperin, … , A Taratuska, A Nicholson-Weller
J A Halperin, … , A Taratuska, A Nicholson-Weller
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):1974-1978. https://doi.org/10.1172/JCI116418.
View: Text | PDF
Research Article

Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells.

  • Text
  • PDF
Abstract

The membrane attack complex of complement (MAC) can induce reversible changes in cell membrane permeability resulting in significant but transient intracellular ionic changes in the absence of cell lysis. Because ion fluxes and cytosolic ionic changes are integral steps in the signaling cascade initiated when growth factors bind to their receptors, we hypothesized that the MAC-induced reversible changes in membrane permeability could stimulate cell proliferation. Using purified terminal complement components we have documented a mitogenic effect of the MAC for quiescent murine 3T3 cells. The MAC enhances the mitogenic effects of serum and PDGF, and also stimulates cell proliferation in the absence of other exogenous growth factors. MAC-induced mitogenesis represents a novel effect of the terminal complement complex that could contribute to focal tissue repair or pathological cell proliferation locally at sites of complement activation.

Authors

J A Halperin, A Taratuska, A Nicholson-Weller

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts