Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

An amino acid polymorphism within the RGD binding domain of platelet membrane glycoprotein IIIa is responsible for the formation of the Pena/Penb alloantigen system.
R Wang, … , R H Aster, P J Newman
R Wang, … , R H Aster, P J Newman
Published November 1, 1992
Citation Information: J Clin Invest. 1992;90(5):2038-2043. https://doi.org/10.1172/JCI116084.
View: Text | PDF
Research Article

An amino acid polymorphism within the RGD binding domain of platelet membrane glycoprotein IIIa is responsible for the formation of the Pena/Penb alloantigen system.

  • Text
  • PDF
Abstract

The human Pena/Penb alloantigen system represents a naturally occurring polymorphism of human platelet membrane glycoprotein (GP) IIIa, and has previously been implicated in the onset of two important clinical syndromes, neonatal alloimmune thrombocytopenic purpura and posttransfusion purpura. To investigate the molecular basis of the polymorphism underlying the Pen alloantigen system, we used the polymerase chain reaction to amplify platelet-derived GPIIIa mRNA transcripts. DNA sequence analysis of amplified GPIIIa cDNAs from nucleotides 161 to 1341 (encompassing amino acid residues 22-414) revealed a G526<==>A526 polymorphism that segregated precisely with Pen phenotype in twelve other individuals examined. This nucleotide substitution results in an Arg (CGA) to Gln (CAA) polymorphism at amino acid 143 of GPIIIa. Interestingly, this polymorphic residue is located within the putative RGD binding site (residues 109-171) of GPIIIa. Platelet aggregation patterns of a Penb/b individual, however, were nearly normal in response to all physiological agonists tested, indicating that this polymorphism does not grossly affect integrin function. Short synthetic peptides encompassing residue 143 were unable to mimic either the Pena or Penb antigenic determinants, suggesting that the Pen epitopes are dependent upon proper folding of the polypeptide chain. Finally, we constructed allele-specific recombinant forms of GPIIIa that differed only at amino acid residues 143. Whereas anti-Pena alloantibodies were able to recognize the Arg143 recombinant form of GPIIIa, anti-Penb antibodies were not. Conversely, anti-Penb alloantibodies were reactive only with the Gln143 isoform of the GPIIIa molecule. It thus appears that amino acid 143 of GPIIIa is not only associated with Pen phenotype, but specifically controls the formation and expression of the Pen alloantigenic determinants.

Authors

R Wang, K Furihata, J G McFarland, K Friedman, R H Aster, P J Newman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts