Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism.
A Consoli, … , D M Bier, J E Gerich
A Consoli, … , D M Bier, J E Gerich
Published December 1, 1990
Citation Information: J Clin Invest. 1990;86(6):2038-2045. https://doi.org/10.1172/JCI114940.
View: Text | PDF
Research Article

Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism.

  • Text
  • PDF
Abstract

To assess the mechanisms responsible for increased gluconeogenesis in noninsulin-dependent diabetes mellitus (NIDDM), we infused [3-14C]lactate, [3-13C]alanine, and [6-3H]glucose in 10 postabsorptive NIDDM subjects and in 9 age- and weight-matched nondiabetic volunteers and measured systemic appearance of alanine and lactate, their release from forearm tissues, and their conversion into plasma glucose (corrected for Krebs cycle carbon exchange). Systemic appearance of lactate and alanine were both significantly greater in diabetic subjects (18.2 +/- 0.9 and 5.8 +/- 0.4 mumol/kg/min, respectively) than in the nondiabetic volunteers (12.6 +/- 0.7 and 4.2 +/- 0.3 mumol/kg/min, respectively, P less than 0.001 and P less than 0.01). Conversions of lactate and alanine to glucose were also both significantly greater in NIDDM subjects (8.6 +/- 0.5 and 2.4 +/- 0.1 mumole/kg/min, respectively) than in nondiabetic volunteers (4.2 +/- 0.4 and 1.8 +/- 0.1 mumol/kg/min, respectively, P less than 0.001 and P less than 0.025). The proportion of systemic alanine appearance converted to glucose was not increased in NIDDM subjects (42.7 +/- 1.9 vs. 44.2 +/- 2.9% in nondiabetic volunteers), whereas the proportion of systemic lactate appearance converted to glucose was increased in NIDDM subjects (48.3 +/- 3.8 vs. 34.2 +/- 3.8% in nondiabetic volunteers, P less than 0.025); the latter increased hepatic efficiency accounted for approximately 40% of the increased lactate conversion to glucose. Neither forearm nor total body muscle lactate and alanine release was significantly different in NIDDM and nondiabetic volunteers. Therefore, we conclude that increased substrate delivery to the liver and increased efficiency of intrahepatic substrate conversion to glucose are both important factors for the increased gluconeogenesis of NIDDM and that tissues other than muscle are responsible for the increased delivery of gluconeogenic precursors to the liver.

Authors

A Consoli, N Nurjhan, J J Reilly Jr, D M Bier, J E Gerich

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts