Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure.
J J Mercadier, … , M Komajda, K Schwartz
J J Mercadier, … , M Komajda, K Schwartz
Published January 1, 1990
Citation Information: J Clin Invest. 1990;85(1):305-309. https://doi.org/10.1172/JCI114429.
View: Text | PDF
Research Article

Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure.

  • Text
  • PDF
Abstract

A decrease in the myocardial level of the mRNA encoding the Ca2(+)-ATPase of the sarcoplasmic reticulum (SR) has been recently reported during experimental cardiac hypertrophy and failure. To determine if such a deficit occurs in human end-stage heart failure, we compared the SR Ca2(+)-ATPase mRNA levels in left (LV) and right ventricular (RV) specimens from 13 patients undergoing cardiac transplantation (6 idiopathic dilated cardiomyopathies; 4 coronary artery diseases with myocardial infarctions; 3 diverse etiologies) with control heart samples using a rat cardiac SR Ca2(+)-ATPase cDNA probe. We observed a marked decrease in the mRNA for the Ca2(+)-ATPase relative to both the 18S ribosomal RNA and the myosin heavy chain mRNA in LV specimens of patients with heart failure compared to controls (-48%, P less than 0.01 and -47%, P less than 0.05, respectively). The LV ratio of Ca2(+)-ATPase mRNA to 18S RNA positively correlated with cardiac index (P less than 0.02). The RV ratio correlated negatively with systolic, diastolic and mean pulmonary arterial pressures (P less than 0.02, P less than 0.02, and P less than 0.01, respectively). We suggest that a decrease of the SR Ca2(+)-ATPase mRNA in the myocardium plays an important role in alterations of Ca2+ movements and myocardial relaxation reported during human end-stage heart failure.

Authors

J J Mercadier, A M Lompré, P Duc, K R Boheler, J B Fraysse, C Wisnewsky, P D Allen, M Komajda, K Schwartz

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts