Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Cytochrome a,a3 reoxidation. Early indicator of metabolic recovery from hemorrhagic shock in rats.
K Kariman, … , F F Jöbsis, H A Saltzman
K Kariman, … , F F Jöbsis, H A Saltzman
Published July 1, 1983
Citation Information: J Clin Invest. 1983;72(1):180-191. https://doi.org/10.1172/JCI110956.
View: Text | PDF
Research Article

Cytochrome a,a3 reoxidation. Early indicator of metabolic recovery from hemorrhagic shock in rats.

  • Text
  • PDF
Abstract

To assess the metabolic recovery of mitochondria after injury, we have monitored, in vivo and noninvasively, changes in the redox state of cytochrome (cyt) a,a3 in 35 rats after tissue hypoxia induced by rapid exsanguination to a mean arterial pressure of 30-35 mmHg. This level of mean arterial pressure was maintained for a shorter period of time in group I (n = 17) and a longer period of time in group II (n = 18), then the shed blood was returned by infusion. The surviving animals were observed for 2 more h before terminating the experiments. During exsanguination, reinfusion and recovery intervals brain tissue parameters of blood oxygenation, relative blood volume, and cyt a,a3 redox state were monitored continuously by spectrophotometry through the closed skull and intact skin. Group I had a high survival rate while group II had a very low survival rate. In both groups, with the onset of hypotension, there was a prompt rapid shift, followed by a slow continued progressive shift, of cyt a,a3 toward a more reduced state. The extent of recovery of cyt a,a3 following reinfusion was different in each group. In group I there was a rapid reoxidation of cyt a,a3 to a level above the base line (16 +/- 12%, mean +/- SEM). In contrast, the extent of reoxidation of cyt a,a3 in group II was significantly lower and stayed 31 +/- 6% below the base-line level. To further evaluate the mechanisms responsible for these observations, another related experiment was performed. 12 rats were subjected to shock and resuscitation as outlined for groups I and II. After death or killing of the animal, we measured, in vitro, oxygen consumption of cerebral cortical slices. Oxygen consumption of cortical tissue slices in subgroup I was significantly higher than in subgroup II. We conclude that, under these experimental conditions, the oxidative response of cyt a,a3 correlates closely with survival or death in the two groups. If in group I animals the greater oxidation of cyt a,a3, in vivo after resuscitation, reflects greater oxygen utilization, as is suggested by the in vitro observations in subgroup I, then we may be observing a useful adaptive response to tissue injury leading to preserved organ function and enhanced survival. Therefore, noninvasively measured cyt a,a3 redox state, reflecting intracellular metabolic activity, seems to indicate both the overall cerebral cellular response to injury and the likelihood of survival.

Authors

K Kariman, F F Jöbsis, H A Saltzman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts