Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Stimulation of ammonia production and excretion in the rabbit by inorganic phosphate. Study of control mechanisms.
H L Yu, … , D J Stinebaugh, M L Halperin
H L Yu, … , D J Stinebaugh, M L Halperin
Published September 1, 1976
Citation Information: J Clin Invest. 1976;58(3):557-564. https://doi.org/10.1172/JCI108501.
View: Text | PDF
Research Article

Stimulation of ammonia production and excretion in the rabbit by inorganic phosphate. Study of control mechanisms.

  • Text
  • PDF
Abstract

The purpose of this study was to clarify the mechanism (s) responsible for regulation of ammonia production and excretion in the rabbit. The normally low ammonia excretion rate during acute metabolic acidosis was stimulated acutely and increased approximately ninefold after infusion of sodium phosphate, but remained low if sodium sulphate or Tris was substituted for phosphate. Ammonia production was increased significantly by phosphate in rabbit renal cortex slices and in isolated renal cortex mitochondria. In isolated mitochondria, mersalyl, an inhibitor of both the phosphate/hydroxyl and phosphate/dicarboxylate mitochondrial carriers, inhibited the phosphate-induced stimulation, indicating that phosphate must enter the mitochondrion for stimulation. A malate/phosphate exchange seemed to be involved since N-ethylmaleimide, an inhibitor of the phosphate/hydroxyl exchange, did not inhibit phosphate-stimulated ammonia production, whereas there was inhibition by 2-n-butylmalonate, a competitive inhibitor of the dicarboxylate carrier. Phosphate itself was not essential since malonate stimulated ammoniagenesis in the absence of added phosphate. Similarly, citrate stimulated ammoniagenesis in isolated mitochondria in the absence of inorganic phosphate provided that it induced L-malate exit on the citrate transporter associated with inhibition of citrate oxidation by fluoroacetate. Similar results were also seen in mitochondria from rat renal cortex. A fall in mitochondrial alpha-ketoglutarate level resulted in an increase in ammonia production. This could be achieved directly with malonate or indirectly via L-malate exit. Simultaneous measurements of glutamate showed that the rate of ammonia production was reciprocally related to the glutamate content. We conclude that phosphate-induced stimulation of ammoniagenesis in the rabbit kidney is mediated by removal of glutamate, the feedback inhibitor of phosphate-dependent glutaminase. Glutamate removal is linked to phosphate-induced dicarboxylate exit across the mitochondrial membrane.

Authors

H L Yu, R Giammarco, M B Goldstein, D J Stinebaugh, M L Halperin

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts