Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Transcobalamins I and II as natural transport proteins of vitamin B12.
C A Hall
C A Hall
Published November 1, 1975
Citation Information: J Clin Invest. 1975;56(5):1125-1131. https://doi.org/10.1172/JCI108187.
View: Text | PDF
Research Article

Transcobalamins I and II as natural transport proteins of vitamin B12.

  • Text
  • PDF
Abstract

There are two conflicting theories of how plasma vitamin B12 (B12) is transported in man: (a) by two distinct transport proteins, transcobalamins I and II (TC I and II), each having a specific role and time of function; and (b) by three active transport proteins, TC I, II, and III, that take up B12 randomly in proportion to the unsaturated amounts of each. To test these theories a man was given 1.12 mug, 229 muCi, of [57Co]B12 mixed with food. Blood samples were taken several times on the 1st day and at lengthening intervals up to day 51. The amount of TC II-B12 was measured in each sample by: gel filtration and by precipitation with (NH4)2SO4. Total serum R-B12 was then separated into TC I and TC III by: (a) a single step anion exchange system and (b) isoelectric focusing (IEF). As the B12 was being absorbed, 92-95% of that in venous blood was carried by TC II. Absolute and percentage transport by TC II declined sharply during the first 24 h; between days 7 and 51 20-33% of the label was on TC II, and the rest was carried by R-type binders. Absolute transport by TC I did not reach a maximum until after day 1 and before day 3. Transport by an alpha2 R-type binder, TC III, could not be demonstrated. TC I was isoelectrically heterogenous, with the components focusing between pH 2.9 and 3.35. It was concluded that (a) TC II is the dominant carrier of B12 immediately after absorption; (b) maximum transport by TC I requires the passage of time after absorption; (c) after the absorbed B12 reaches equilibrium with the total body B12, about one fourth of the plasma B12 is carried by TC II and three fourth by TC I; and (d) TC I and TC II are the only functional transport proteins of plasma B12.

Authors

C A Hall

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts