Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Submit a comment

Inorganic pyrophosphate pool size and turnover rate in arthritic joints.
M Camerlain, … , D C Silcox, A Jung
M Camerlain, … , D C Silcox, A Jung
Published June 1, 1975
Citation Information: J Clin Invest. 1975;55(6):1373-1381. https://doi.org/10.1172/JCI108056.
View: Text | PDF
Research Article

Inorganic pyrophosphate pool size and turnover rate in arthritic joints.

  • Text
  • PDF
Abstract

Recent studies have shown elevated inorganic pyrophosphate (PPi) levels in most knee joint fluid supernates from patients with pseudogout (PG) or osteoarthritis (OA) and more modestly elevated levels in some supernates from patients with gout or rheumatoid arthritis (RA) relative to PPi levels found in the venous blood plasma of normal or arthritic subjects. We measured the intraarticular PPi pool and its rate of turnover to better understand the significance of the joint fluid-plasma PPi gradient. Preliminary studies in rabbits showed that (32-P)PPi passed from joint space to blood and vice versa without detectable hydrolysis. Incubation of natural or synthetic calcium pyrophosphate dihydrate (CPPD) microcrystals with synovial fluid in vitro in the presence of (32P)PPi tracer showed no change in PPi specific activity in the supernate over a 19-h period so that exchange of PPi in solution with that in CPPD microcrystals could be ignored. Clearance rates of (32P)PPi and of (33P)Pi, as determined by serially sampling the catheterized knee joints of volunteers with various types of arthritis over a 3-h period, were nearly identical. The (32P)PPi/(32P)Pi was determined in each sample. A mixture of a large excess of cold PPi did not influence the clearance rate of either nuclide. The quantity of PPi turned over per hous was calculated from the pool size as determined by isotope dilution and the turnover rate. The residual joint fluid nuclide was shown to be (32P)PPi. The PPi pool was generally smaller and the rate of turnover was greater in clinically inflamed joints. The mean plus or minus SEM pool size (mu-moles) and turnover rate (percent/hour) in PG knees was 0.23 plus or minus 0.07 and 117 plus or minus 11.9, hydrolysis rate (%/h) to Pi was 27.7 plus or minus 13.2; in OA knees: 0.45 plus or minus 0.26 and 72 plus or minus 9.2, hydrolysis 6.9 plus or minus 0.9; in gouty knees: 0.8 plus or minus 0.41 and 50 plus or minus 11.6, hydrolysis 9.8 plus or minus 2.8; and in RA knees: 0.14 plus or minus 0.14 and 114 plus or minus 35.8, hydrolysis 236 plus or minus 116. PPi turnover (mumoles/hour) correlated with the degree of OA change present in the joint as graded by radiologic criteria irrespective of the clinical diagnosis. Mean PPi turnover in joints with advanced OA was greater than in those with mild or moderate changes (P smaller than 0.001), but the mild and moderate groups showed no significant difference. We conclude that synovial PPi turnover and elevated PPi fluid concentrations are not specific for PG patients, and that these factors alone cannot be the only determinants of CPPD crystal deposition.

Authors

M Camerlain, D J McCarty, D C Silcox, A Jung

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts