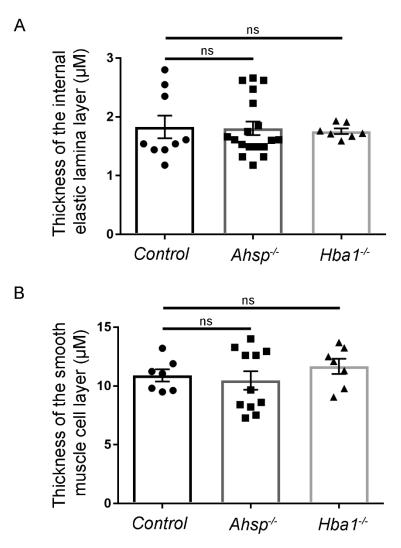
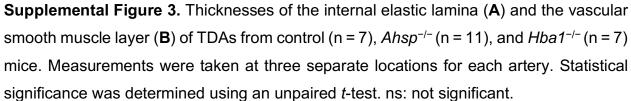
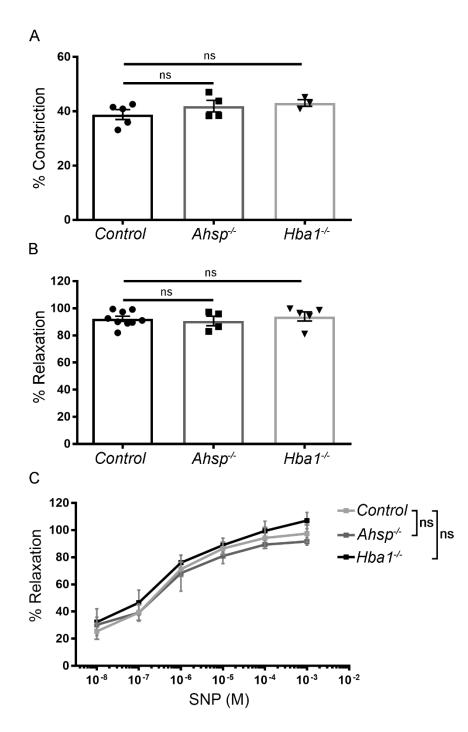
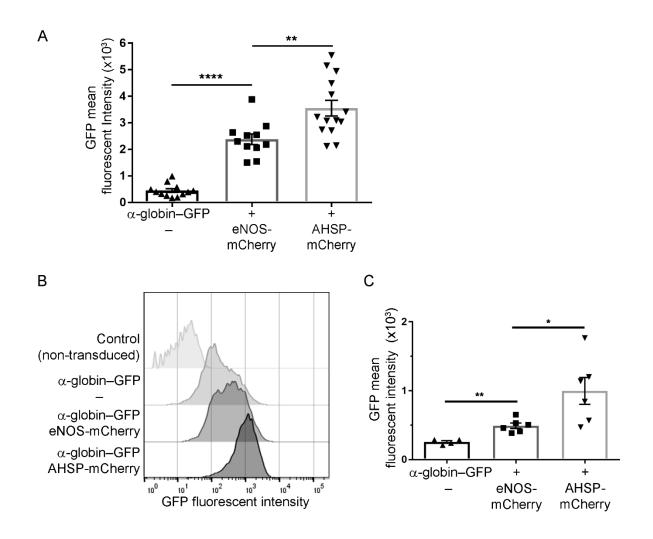

Supplemental Figures



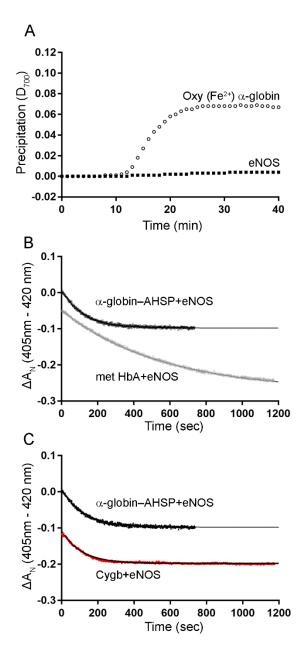

Supplemental Figure 1. Indirect immunofluorescence staining for α -globin and PAI1 (a myoendothelial junction marker) in flat-mount thoracodorsal (**A**) and mesenteric (**B**) artery preparations from 6-month–old wild-type mice. DAPI-stained nuclei appear blue. Images are shown at the same magnification with scale bars equivalent to 25 µm.

Supplemental Figure 2. Immunohistochemical analysis of human coronary arteries. (**A**) Expression of α -globin (detected by two different antibodies), β -globin, AHSP, and eNOS in adjacent cross-sections. Note that α -globin and AHSP (indicated by arrows), but not β -globin, are expressed in endothelial cells (ECs) and vascular smooth muscle cells


(VSMC). Images are shown at the same magnification with scale bars equivalent to 50 μ m (main images) and 25 μ m (inset rectangles). (**B**) Positivity scores for multiple experiments performed as in panel A, with each symbol representing a sample from a different individual (n = 4–6). (**C**) Expression of α -globin and β -globin proteins in luminal red blood cells. Images are shown at the same magnification with scale bars equivalent to 50 μ m. (**D**) Scatter plot summarizing the positivity scores for multiple experiments performed as in panel C, with each symbol representing a sample from a different individual (n = 4–6). Statistical significance was determined using an unpaired *t*-test. ****P* < 0.005; *****P* < 0.001; ns: not significant.



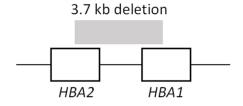
Supplemental Figure 4. Hematopoietic reconstitution after bone marrow transplant (BMT). Wild-type bone marrow cells were transplanted into lethally irradiated $Ahsp^{-/-}$ mice. Four weeks later, donor reconstitution was measured by PCR analysis of circulating mononuclear cells for the presence of WT and mutant *Ahsp* alleles (n = 12) (1).



Supplemental Figure 5. Smooth muscle contractility, coupling with ECs, and sensitivity to NO are not altered by *Ahsp* or *Hba1* gene disruption. (**A**) Vasoconstriction of thoracodorsal arteries (TDAs) from control (n = 5) and mutant ($Ahsp^{-/-}$ [n = 4] and $Hba1^{-/-}$ [n = 3]) mice after treatment with 40 mM KCl. (**B**) Vasodilation of TDAs from control (n = 9) and mutant ($Ahsp^{-/-}$ [n = 4] and $Hba1^{-/-}$ [n = 5]) mice after treatment with the intermediate

and small potassium (IK/SK) channel activator NS309 (1 μ M). (**C**) Vasodilation of TDAs from control (n = 9) and mutant (*Ahsp*^{-/-} [n = 4] and *Hba1*^{-/-} [n = 5]) mice after treatment with escalating doses of the NO donor sodium nitroprusside (SNP). Statistical significance was determined using an unpaired *t*-test. ns: not significant.

Supplemental Figure 6. AHSP or eNOS stabilize α-globin in ECs. Coronary artery ECs in culture were transduced with lentiviral vectors encoding α-globin–GFP, AHSP-mCherry, or eNOS-mCherry (see also Figure 5 in the main paper). (**A**) The mean fluorescence intensities of α-globin–GFP were determined by immunofluorescence microscopy using Nikon NIS-Elements software, version 4.50. The bar chart depicts the mean fluorescence intensity of α-globin–GFP when expressed alone, with AHSP-mCherry, or with eNOS-mCherry (9–10 fields were assessed for each condition, with approximately 10 cells per field). (**B**) The mean fluorescence intensities of α-globin–GFP with eNOS-mCherry, as quantified by flow cytometry. (**C**) Summary of the results of multiple flow-cytometry experiments. Statistical significance was determined using an unpaired *t*-test. **P*<0.05; ***P*<0.01; *****P*<0.001.



Supplemental Figure 7. (**A**) Oxygenated (Fe²⁺) α -globin (15 μ M) or full-length recombinant eNOS (15 μ M) were incubated with potassium ferricyanide (50 μ M final concentration), and protein precipitation was monitored by light absorbance at 700 nm. (**B**) Reduction of (Fe³⁺) α -globin-AHSP (0.5 μ M) or metHbA (1.5 μ M) by recombinant human eNOS (1 μ M). (**C**) Reduction of (Fe³⁺) α -globin–AHSP (0.5 μ M) or cytoglobin (Cygb, 0.5 μ M) by recombinant human eNOS (1 μ M). Were anaerobic conditions with 50 μ M NADPH and 250 U/mL catalase.

A Disruption of the mouse α -globin gene locus by homologous recombination

B Human common deletions in the α -globin gene cluster

Supplemental Figure 8. α -Globin gene disruptions in the *Hba1^{-/-}* mice used in this study (2) (A) and in Kenyan individuals with α -thalassemia trait examined by Etyang et al. (3) (B). The diagram in panel B is modified from that of Shaji et al. (4).

References

- Kihm AJ, Kong Y, Hong W, Russell JE, Rouda S, Adachi K, Simon MC, Blobel GA, and Weiss MJ. An abundant erythroid protein that stabilizes free alpha-haemoglobin. *Nature*. 2002;417(6890):758-63.
- Chang J, Lu RH, Xu SM, Meneses J, Chan K, Pedersen R, and Kan YW. Inactivation of mouse alpha-globin gene by homologous recombination: mouse model of hemoglobin H disease. *Blood*. 1996;88(5):1846-51.
- 3. Etyang AO, Khayeka-Wandabwa C, Kapesa S, Muthumbi E, Odipo E, Wamukoya M, Ngomi N, Haregu T, Kyobutungi C, Tendwa M, et al. Blood Pressure and Arterial Stiffness in Kenyan Adolescents With alpha+Thalassemia. *J Am Heart Assoc.* 2017;6(4).
- 4. Shaji RV, Srivastava A, Chandy M, and Krishnamoorthy R. A single tube multiplex PCR method to detect the common alpha+ thalassemia alleles. *Blood.* 2000;95(5):1879-80.

Antibody	Туре	Concentration	Supplier, reference	
α-globin	Polyclonal	2.5 µg/mL (histology, mouse) Abcam, Ab102758		
α-globin	Polyclonal	10 μg/mL (histology, mouse and human) Abcam, Ab92492		
α-globin	Polyclonal	10 µg/mL (histology, human) Abcam, Ab82871		
α-globin	Polyclonal	(Western blot) Home-made		
β-globin	Polyclonal	10 µg/mL (histology, human)	Novus Biologics NBP2- 14081	
β-globin	Polyclonal	0.2 µg/mL (histology)	RayBiotech 119-14366	
β-globin	Polyclonal	0.2 µg/mL (Western blot)	Santa Cruz SC-31116	
AHSP	Polyclonal	5–10 µg/mL (histology, mouse and human)	Rockland 100-401-E79S	
AHSP	Polyclonal	10 μg/mL (histology, mouse and human)	Abcam, Ab180861	
AHSP	Polyclonal	(Western blot)	Home-made	
eNOS/NOSIII	Monoclonal	1 μg/mL (histology, mouse) 0.2 μg/mL (Western blot)	BD 610297	
eNOS/NOSIII	Polyclonal	2.5 µg/mL (histology, human)	Abcam, Ab5589	
PAI 1	Monoclonal	1 μg/mL (histology, mouse) 0.2 μg/mL (Western blot)	Abcam, Ab125687	
Alexa 488	Rabbit	4 μg/mL	Invitrogen, Life Technologies, A11008	
Alexa 594	Mouse	4 μg/mL	Invitrogen, Life Technologies, A11005	
Fibronectin	Polyclonal	200 μg/mL	Santa Cruz, SC-6952	
Laminin	Rabbit	4100 µg/mL	DAKO, Z0097	
Goat anti-rabbit IgG	HRP conjugate	0.05 μg/mL	Jackson ImmunoResearch Laboratories, 111-035-003	
Donkey anti- chicken IgG	HRP conjugate	0.05 μg/mL	Jackson ImmunoResearch Laboratories, 703-035-155	

Supplementary Table 1. Antibodies used in this study.

Supplementary Table 2. Red blood cell indices of $Ahsp^{-/-}$ and $Hba1^{-/-}$ mice at baseline and six to eight weeks post bone marrow transplant (BMT) with wild-type donor hematopoietic stem and progenitor cells. RDW: red cell distribution width. One-way ANOVA statistical analysis. Statistical significance was determined using unpaired t test. *P < 0.05; ****P < 0.001; ns: not significant.

Genotype:	Wild-type	Ahsp ^{-/-}	<i>Ahsp^{-/-}</i> post-BMT	Hba1⁻⁄-	<i>Hba1^{-/-}</i> post-BMT
n	6	6	6	6	4
Hemoglobin (g/dL)	13.02 ± 0.10	12.27 ± 0.34 ns	13.65 ± 0.22 ns	12.32± 0.35 ns	13.3 ± 0.52 ns
RDW (%)	13.55 ± 0.20	14.63 ± 0.45 ns	13.83 ± 0.49 ns	25.75 ± 1.28	14.4 ± 0.89 ns
Reticulocyte (%)	2.38 ± 0.47	5.07 ± 1.15 *	2.85 ± 1.27 ns	8.17 ± 0.74	2.62 ± 0.12 ns

Supplementary Table 3. Oligonucleotide primers used for quantitative RT-qPCR.

GENE	FORWARD PRIMER 5'→ 3'	REVERSE PRIMER 5'→ 3'
HBA	GCTCTCTGGGGAAGACAAAA	GCCGTGGCTTACATCAAAGT
AHSP	GGATCAGCAGGTCTTTGATGA	TTGCTGGAATTCTGTCATGG
HBB	GCTGGTTGTCTACCCTTGGA	GGCTGTCCAAGTGATTCAGG
ENOS	GCACCCAGAGCTTTTCTTTG	GTCAACCGAACGAAGTGACA
GAPDH	GTGTTCCTACCCCCAATGTG	AGGAGACAACCTGGTCCTCA
ACTB	CCATCTACGAGGGCTATGCT	TTTGATGTCACGCACGATTT