

Fig. S1. Immunostaining and mRNA expression in heart tissue and isolated ECs and CMs from *Cd36*^{flox/flox}, EC- *Cd36*^{-/-}, and CM-*Cd36*^{-/-} mice. (A) Sub-organ CD36 mRNA levels in isolated fractionation of female mouse hearts. Data are mean ratios normalized to CM-*Cd36*^{-/-} (set as 1.0). δP < 0.0001 versus CM-*Cd36*^{-/-} mice. (B) In situ identified specific CD36 mRNA in heart tissues (arrow). (C-E) mRNA expression in muscle, BAT, and liver of *Cd36*^{flox/flox} and EC- *Cd36*^{-/-} mice. (F) Anti-CD36 antibody stained sections from *Cd36*^{flox/flox}, EC-*Cd36*^{-/-}, and CM-*Cd36*^{-/-} mouse lungs. (G) CM *Cd36* mRNA and protein expressions in *Cd36*^{flox/flox}, EC- *Cd36*^{-/-}, and CM-*Cd36*^{-/-} mouse hearts. (H) qRT-PCR analysis of gene expression in ECs from *Cd36*^{flox/flox} and EC-*Cd36*^{-/-} mice and (I) CMs from EC-*Cd36*^{-/-} mouse hearts.*P < 0.05 and δP < 0.0001 versus *Cd36*^{flox/flox} mice. P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

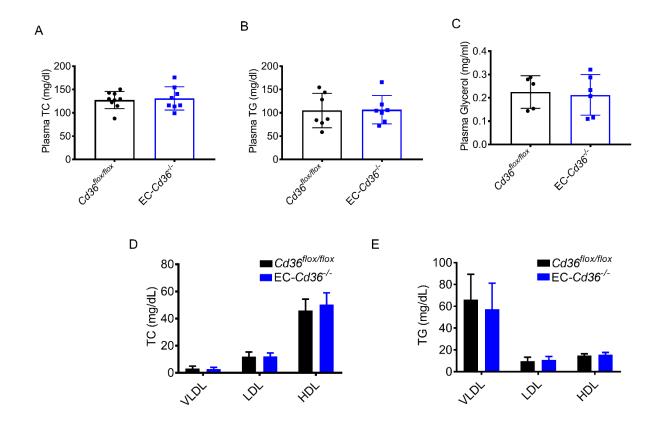


Fig. S2. Plasma lipids, glycerol, and lipoprotein particles in 4-month-old EC- $Cd36^{-/-}$ male mice fed chow diet. (A) Plasma TC and (B) TG levels in $Cd36^{flox/flox}$ and EC- $Cd36^{-/-}$, and CM- $Cd36^{-/-}$ male mice. (C) Plasma glycerol in EC- $Cd36^{-/-}$ mice. (D) TC and (E) TG levels of plasma lipoprotein particles. Data are means \pm S.D. (n=5-8). P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

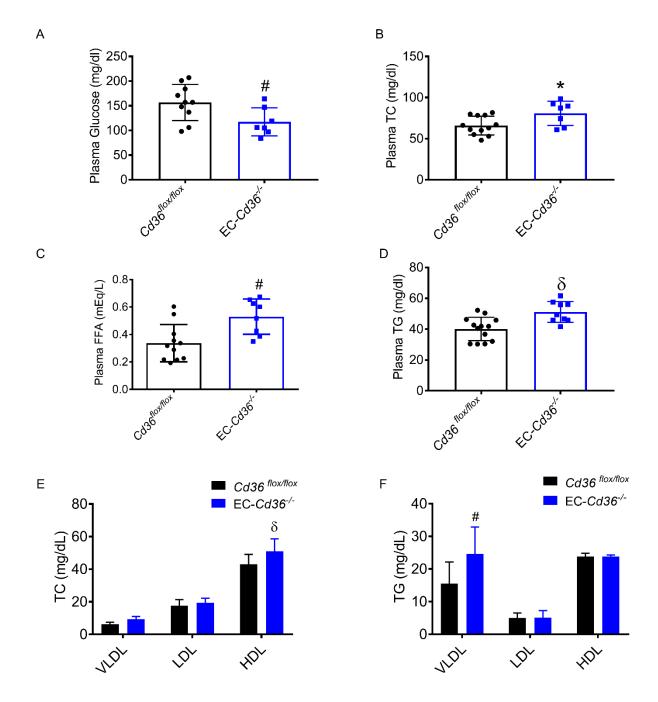


Fig. S3. Increase of plasma glucose, lipids, and lipoprotein particles in 4-month-old EC- $Cd36^{-/-}$ female mice fed chow diet. (A) Plasma glucose (B) TC, (C) FFA, and (D) TG. (E) TC and (F) TG levels of plasma lipoprotein particles. Data are means \pm S.D (n=8-10). $^{\$}P < 0.001$ compared to $Cd36^{flox/flox}$ mice. P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

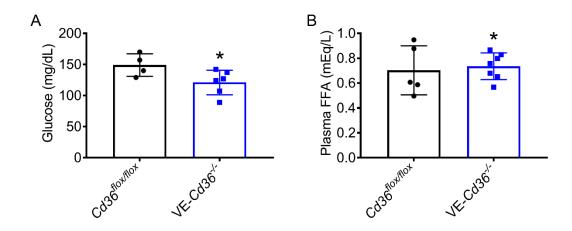
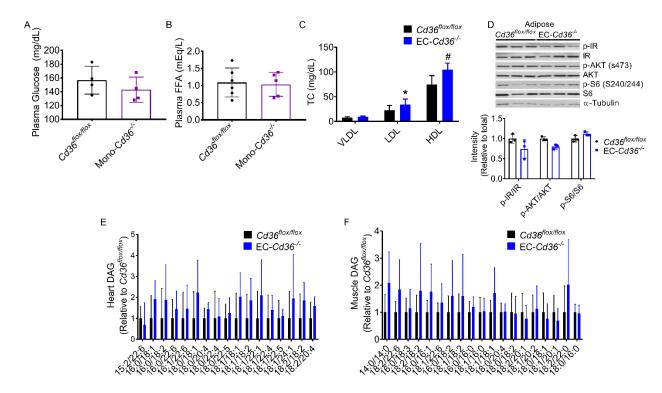



Fig. S4. Decrease of plasma glucose and increase of plasma TC in VE- $Cd36^{-/-}$ male mice. (A) Plasma glucose and (B) FFA in VE- $Cd36^{-/-}$ male mice. Data are means \pm S.D. (n=4-7). $^+$ P < 0.05 compared to $Cd36^{flox/flox}$ mice. P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

Fig. S5. Plasma and tissue lipids (A) Plasma glucose (n=4) and **(B)** FFA (n=5-6) in Mono- $Cd36^{-1}$ mice (mRNA decreased 70% compared to $Cd36^{flox/flox}$ controls) fed chow diet. **(C)** Plasma lipoprotein TC levels in EC- $Cd36^{-1}$ mice fed 3-week HFD. **(D)** Western blots (top) and quantification of p-IR, pAKT, and pS6 protein levels (normalized to total IR, Akt, or S6 signal, bottom) from WAT of HFD-fed $Cd36^{flox/flox}$ and EC- $Cd36^{-1}$ mice. **(E)** Individual DAG species in the heart (n=4-5) and **(F)** muscle (n=9-10) of HFD-fed mice. Data are means \pm S.D. *P < 0.05 and *P < 0.01 compared to $Cd36^{flox/flox}$ mice. P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

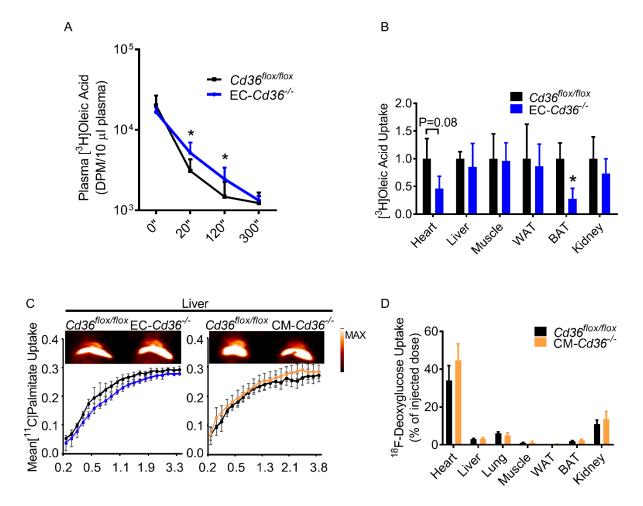


Fig S6. LCFA and [18 F]DG uptake in EC- $Cd36^{-/-}$ and CM- $Cd36^{-/-}$ mice.(A) 4-5 month old female $Cd36^{flox/flox}$ and EC- $Cd36^{-/-}$ mice (n=5-6) were fasted for 16 hours; plasma radioactivity (B) their tissue [3 H]oleic acid uptake (n=5-6) were measured at shown time points after intravenous injection of [3 H]oleic acid and. (C) Real time [11 C]palmitic acid uptake into liver of $Cd36^{flox/flox}$, EC- $Cd36^{-/-}$, and CM- $Cd36^{-/-}$ mice. Insert shows representative scans of [11 C]palmitate uptake at 2 min after tracer administration. (D)[18 F]DG uptake in 4-6 month old CM- $Cd36^{-/-}$ male mice. Data are means \pm S.D. *P < 0.05 compared to $Cd36^{flox/flox}$ controls. P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

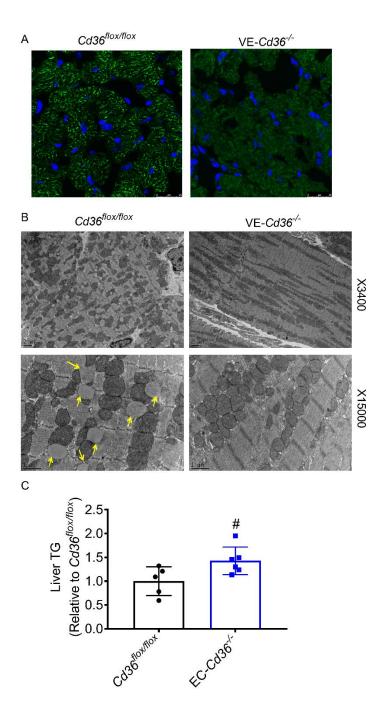
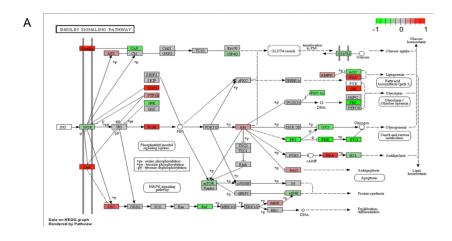
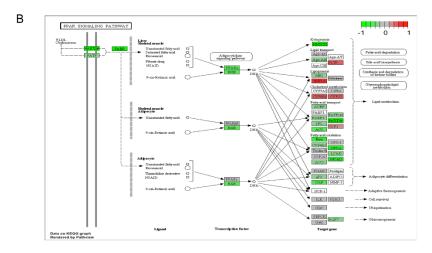




Fig S7. Reduced heart lipid droplet accumulation in VE- $Cd36^{-/-}$ mice. (A) BODIPY (493/503) staining of intramuscular lipid droplets in $Cd36^{flox/flox}$ and VE- $Cd36^{-/-}$ hearts. (B) EM images of $Cd36^{flox/flox}$ and VE- $Cd36^{-/-}$ mice (n=5-6). Data are means \pm S.D. $^{\#}P$ < 0.01 compared to $Cd36^{flox/flox}$ mice. P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

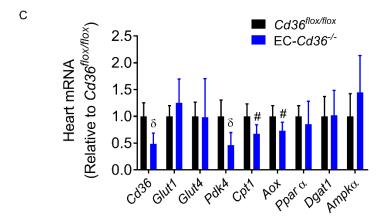


Fig S8. CM- $Cd36^{-/-}$ KEGG analysis and female mouse heart mRNA expression. (A) KEGG analysis of insulin signaling and (B) PPAR pathways in CM- $Cd36^{-/-}$ mouse hearts. (C) qRT-PCR analysis of mRNA expression in 4-5 month old female $Cd36^{flox/flox}$ and EC- $Cd36^{-/-}$ mice with 16 hours fasting (n=7-9). Data are means \pm S.D. $^{\#}$ P < 0.01 and $^{\delta}$ P < 0.001compared to $CD36^{flox/flox}$ controls. P values were calculated by one-way ANOVA with a Dunnett's multiple comparisons test.

	Primer sequences	Amplification size (base pair)
Primer 1	Sense: 5'-attggcatctgtgtagcgctcttggc -3' Antisense: 5'-tgctactatgcactccatgcaggc -3'	WT: 289 bp Cd36 floxed allele: 372 bp
Primer 2	Sense: 5'-attggcatctgtgtagcgctcttggc -3' Antisense: 5'-tcaggaccatagcaagtaggc -3'	WT: 2116 bp Cd36 null allele: 420 bp
Primer 3	Sense: 5'-aacactgtgattgtacctg-3' Antisense: 5'-tcaataagcatgtctccgac -3'	WT: 160 bp Cd36 null allele: undetectable

Supple me ntary Table 1. Primers used for PCR amplification to detect DNA and mRNA from wild type, $Cd36^{flox/flox}$, and $Cd36^{flox/flox}$ mice.