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The challenge of hepatitis B 
virus cure
Viral hepatitis remains a leading cause of 
death globally, with over 400 million peo-
ple chronically infected with hepatitis B 
virus (HBV) (1) and an estimated 71 million 
infected with hepatitis C virus (HCV) (2). 
Left untreated, these infections can lead to 
progressive liver fibrosis, liver failure, and 
hepatocellular cancer. While HCV infec-
tion can now be cured using relatively short 
courses of oral therapies, HBV cure is rare-
ly achieved, even after years of therapy; 
therefore, once initiated, treatment is usu-
ally maintained for the rest of the patient’s 
life. The reason underlying the need for 
life-long treatment is that, although HBV 
nucleos(t)ide antiviral drugs inhibit viral 
replication, HBV covalently closed cir-
cular DNA (cccDNA), from which HBV 
mRNA transcripts are generated, remains 

intact within hepatocytes. Consequently, 
in the majority of cases, stopping HBV 
therapy results in a rapid reemergence of 
the virus that is often associated with liver 
inflammation and a detectable rise in liver 
transaminases, a phenomenon known as 
hepatic flares (3, 4). Hepatic flares may 
be associated with the development of 
liver fibrosis and hepatic decompensation, 
especially in those patients with underly-
ing cirrhosis (5). Nevertheless, there is an 
important subset of patients in whom HBV 
antiviral therapy can be safely stopped. 
Currently, HBV surface antigen (HBsAg) 
seroconversion or HBsAg levels below 100 
IU/ml, a level that likely represents the 
final stages of host immune control over 
HBV replication, are the only biomark-
ers used to identify patients who may be 
amenable to stopping nucleos(t)ide thera-
pies (6). However, these low levels (or 

seroconversion) of HBsAg may take many 
years to achieve on therapy and are found 
in only a very small minority of patients. A 
thorough understanding as to why some 
people control HBV infection and others 
do not, which patients are on a path toward 
full immune control, and who will develop 
hepatic flares after cessation of HBV ther-
apy are key questions that, if answered, 
will not only guide clinical management, 
but may give critical insights into HBV 
immune control that can be exploited for 
novel strategies of HBV immunotherapy.

In this issue, Rivino and colleagues 
have provided a comprehensive analy-
sis that gets to the heart of these issues 
through the careful, longitudinal analy-
sis of chronically HBV-infected patients 
before and after the cessation of HBV 
nucleos(t)ide antiviral therapy (7). In par-
ticular, this work focused on the identifi-
cation of immune parameters associated 
with hepatic flare rather than long-term 
viral control (although these are linked to 
some extent) after stopping therapy. The 
study employed a combination of stan-
dard immunological techniques alongside 
cutting edge technologies to assess the 
functionality of both HBV-specific T cells 
and other relevant global immune cell 
populations. Rivino et al. employed tools, 
including IFN-γ ELISpot and flow cyto-
metric assays, to measure HBV-specific T 
cell responses, mass cytometry (CyTOF) 
to assess global NK, T, and B cell popu-
lations, and NanoString technologies to 
evaluate the transcriptome of bulk CD4+ 
and CD8+ T cell subsets.

Prospective studies of HBV-infected 
patients conducted over several years may 
be required to assess treatment outcomes. 
Such a time frame represents a challenge 
in the HBV field, as these studies require 
both long-term funding and commitment 
from investigators. The work by Rivino 
et al. exemplifies why such commitment 
is required, as in this study, nucleos(t)
ide therapy was withdrawn sequentially, 
with patients finally receiving lamivudine 
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gens. Interestingly, HBV-specific, cytokine-
producing cells were best recovered from 
the PD1+ populations and were enriched in 
nonflare patients. When bound to its ligand 
PDL1/2, PD1 suppressed T cell activation 
through the recruitment of SHP-2, which 
dephosphorylates and inactivates Zap70, 
a major integrator of T cell receptor–medi-
ated signaling (8). The study by Rivino et 
al. implies that HBV-specific T cells con-
trol HBV replication and protect patients 
from hepatic flare when therapy is stopped; 
however, these functional cells appear to 
be enriched in PD1+ T cell compartments, 
which are more traditionally associated 
with an exhausted T cell (Tex) phenotype.

Implications beyond HBV
The results of this work extend beyond the 
realm of HBV immunology and delve into 
the complexity that underlies the genera-
tion of T cell subsets during chronic viral 
infections in humans (Figure 1). Moreover, 
a better understanding of the T cell sub-
sets linked to viral control may possibly be 
exploited for therapeutic gain. In particu-
lar, the findings of Rivino et al. are part of 
a growing body of work that challenges the 
conventional view (9) that PD1 expression 
on antiviral T cells is simply linked to and a 
marker of poorly functional Tex cells with 
little potential for recovery and manipula-
tion. The remarkable results observed in 
some patients with cancer following the 
use of checkpoint modulators is perhaps 
the clearest evidence that T cells express-
ing PD1 can recover function (10). How-

lication. The study also suggests that HBV-
specific T cells with proliferative capacity 
may be used to predict which patients can 
safely stop therapy and defines a specific 
cut-off for this purpose using a cultured 
ELISpot assay. However, HBV-targeting T 
cell detection with ELISpot is not a readily 
exportable technique, and there are sim-
pler semiquantitative T cell assays, such 
as QuantiFERON assay, that may be more 
readily applied. Additionally, these obser-
vations suggest that HBV core and poly-
merase antigens may be particularly good 
targets for immunotherapeutic strategies.

Rivino et al. further evaluated factors 
that may contribute to hepatic flare by using 
NanoString technology to assess mRNA 
transcripts from more than 500 genes on 
flow cytometry–sorted CD4+ and CD8+ T 
cells. Unexpectedly, T cells from patients 
without flare showed an increase in tran-
scripts that are conventionally associated 
with T cell exhaustion, including those 
encoding programmed cell death protein 1 
(PD1) and T cell immunoglobulin domain 
(TIM3). Similar trends were observed in the 
CyTOF data, in which PD1 and TIM3 were 
increased in CD8+ T cells. This intrigu-
ing result feeds into the current debate 
about the role of PD1 in chronic viral infec-
tions and raises the question of whether 
functional HBV-specific T cells could be 
recovered from PD1+ populations. Rivino 
et al. used flow cytometry to sort periph-
eral blood mononuclear cells into PD1+ and 
PD1– fractions and cultured these popula-
tions with core and polymerase HBV anti-

monotherapy for 48 weeks before com-
plete cessation of therapy. Approximately 
a third of the patients developed hepatic 
flares within 6 months after therapy was 
stopped, and these hepatic flares were 
associated with high levels of HBV DNA 
that were 100-fold greater than those 
observed in patients without flare.

Identifying markers of hepatic 
flare
Evaluation of the function and frequency 
of global NK, B, and T cells using CyTOF 
by Rivino et al. found no clear differenc-
es in these cell types between flare and 
nonflare patient groups. However, as it is 
well established that HBV-specific T cells 
associate with the control of HBV replica-
tion, HBV-specific T cells were evaluated 
before and after nucleos(t)ide therapy to 
determine whether this population could 
predict (and by implication causally con-
tribute to) hepatic flares. Although HBV-
specific responses were undetectable 
when measured ex vivo, these could be 
identified by IFN-γ ELISpot assays follow-
ing stimulation with peptides across the 
whole HBV genome, with HBV-specific T 
cells targeting HBV core and polymerase 
antigens detected at significantly higher 
levels in the nonflare patients. Impor-
tantly, these findings suggest that hepatic 
flares are not driven by HBV-specific T 
cells, with the caveat that HBV-specific 
T cells were measured in the peripheral 
blood rather than in the liver where HBV-
specific T cells ultimately will control rep-

Figure 1. A schematic representation of PD1 
expression and T cell differentiation in viral 
hepatitis. PD1 expression and selected discrimi-
natory markers of T cell differentiation and the 
generation of T cell memory are shown during 
clinical stages of infection. These include acute 
and resolved viral infection (blue lines), chronic 
infection (red lines), and chronic infection with 
viral suppression with antiviral therapy (green 
lines). Partially exhausted T cells with memory 
potential have been shown to play a role in viral 
suppression during chronic disease in mouse 
models and can be expanded after therapy 
following in vivo or ex vivo antigen rechal-
lenge. Tem, effector memory cells; Tcm, central 
memory cells; Tpex(M), partially exhausted T 
cells with memory potential.
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molecules, such as PD1 and 2B4 (19), sup-
porting the hypothesis that intrahepatic T 
cells, which are constantly exposed to gut 
antigens and pathogens, must play a role 
in immune surveillance and regulation. 
Liver-resident memory T cells (Trm), 
which express high levels of both PD1 and 
CD39 (a combination that defines termi-
nally exhausted Tex cells in HCV infec-
tion, ref. 20), have recently been shown 
to be expanded in patients with immune 
control of HBV infection. Critically, these 
cells are able to rapidly produce antiviral 
cytokines after polyclonal stimulation, an 
observation that supports the hypothesis 
that PD1 may preserve functional T cells 
within the hepatic environment (21).

Finally, this study, which centered on 
two relatively small patient cohorts, shows 
the potential utility of carefully pheno-
typing prospectively followed patients 
along with evaluating important clinical 
outcomes. This type of prospective clini-
cal study should be supported and lies at 
the heart of an initiative in the UK, led by 
the Medical Research Council, to develop 
disease-based cohorts for stratified medi-
cine studies, though as yet, HBV is not in 
the portfolio. The HBV field is ripe for such 
an approach in larger studies to properly 
account for patient heterogeneity.
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