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Introduction

Clinical and epidemiologic evidence indicates that chronic
inflammation is a major risk factor for several gastrointestinal
malignancies, including esophageal, gastric, colorectal, hepat-
ic, and pancreatic cancer. For example, patients with persistent
hepatitis B infection, Helicobacter pylori infection, or autoim-
mune disorders such as inflammatory bowel diseases (IBD) face
an increased lifetime risk for liver cancer, gastric cancer (GC), or
colorectal cancer (CRC), respectively. In addition, solid tumors
themselves exhibit certain characteristics found in inflamed tis-
sues, referred to as tumor-induced inflammation. The common
pathological features of chronic inflammatory diseases and solid
cancers include elevation of proinflammatory mediators such as
cytokines, chemokines, and lipids, massive infiltration of dereg-
ulated immune cells, and recruitment of endothelial cells and
fibroblasts (1-3). The observation that nonsteroidal antiinflam-
matory drugs (NSAIDs) reduce the incidence, metastasis, and
mortality of various solid tumors (4-10), including gastrointesti-
nal cancer, supports the concept that chronic inflammation pro-
motes tumor initiation, growth, and progression. NSAIDs are the
most commonly used drugs that help reduce inflammation and
relieve fever and pain. It is well accepted that NSAIDs primarily
target the cyclooxygenase enzymes COX-1 and COX-2 in reduc-
ing inflammation and relieving pain and/or fever.

COX-1is constitutively expressed in most tissues and is thought
to provide basal levels of prostanoids, a subgroup of eicosanoids
including prostaglandins (PGs), thromboxanes, and prostacyclins
that are important for tissue homeostasis and platelet function. In
contrast, COX-2 is an immediate-early response gene that is usu-
ally absent in healthy tissues and organs, but is highly inducible at
sites of inflammation and is overexpressed in certain cancers, such
as those that arise in the gastrointestinal tract. For example, COX-2
expression is elevated in approximately 50% of colorectal adeno-
mas and 85% of adenocarcinomas (11-13). Similarly, COX-2 over-
expression is also observed in esophageal and gastric cancer (14,
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15). Elevation of COX-2 expression is also associated with a shorter
survival time among patients with CRC and esophageal cancer (16,
17). However, conflicting results have been reported in the associa-
tion between COX-2 expression and survival in patients with GC
(18). COX enzymes convert arachidonic acid into an endoperox-
ide intermediate that can be further metabolized to prostanoids,
including PGs such as PGE,, PGD,, PGF, , PGL,, and thromboxane
A, (TxA)) via specific PG synthases (Figure 1). Moreover, pros-
tanoids exert their cellular functions by binding cell surface G pro-
tein-coupled receptors. These cell surface receptors are designated
EP (EP1, EP2, EP3, and EP4) for the PGE, receptors, DP1 and DP2
for the PGD, receptor, FP for the PGF, receptor, IP for the PGI
receptor, and TP for the TxA, receptor (Figure 1).

The roles of prostanoids in acute inflammation have been
recognized very early, and their levels are immediately elevated
before leukocyte infiltration in acute inflammation. Among pros-
tanoids, both PGE, and PGI, have been shown to induce acute
inflammation in the majority of animal models (19). In contrast,
PGD, has been shown to suppress acute inflammation via binding
to its DP receptors and via enzymatically independent generation
of 15-deoxy-A'>!*-PGJ, (15d-PG]J,) in animal models (20). 15d-PG],
mainly binds to PPARy and directly inhibits the NF-«B signaling
pathway (21, 22). Similarly, PGE, and PGI, also enhance chronic
inflammation (23) and play a key role in arthritis and IBD (24, 25).
The role of PGD, in chronic inflammation is context-dependent.
On the one hand, PGD,-derived 15d-PGJ, inhibits adjuvant-
induced arthritis in vivo (26). On the other hand, PGD, facilitates
allergic inflammation (25). The roles of PGF, and TxA, in inflam-
mation remain unclear.

Although NSAIDs exhibit antitumor effects, the molecular
mechanisms underlying their effects, especially aspirin, are not
fully understood. Although other mechanisms have been pro-
posed to explain the antitumor effects of these drugs, and “off-
target” effects do exist, COX-1 and COX-2 remain primary targets.
For example, celecoxib, belonging to a family of COX-2-selective
inhibitors (COXIBs), was initially approved by the FDA for use as
adjuvant therapy for patients with familial adenomatous polyposis
(FAP), but is no longer recommended for that indication. Howev-
er, long-term use of celecoxib and other COXIBs as well as nonse-
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Figure 1. An overview of prostanoid synthesis pathways. Free arachidonic
acid can be metabolized to PGH, by COX-1and COX-2. NSAIDs inhibit activ-
ity of COX-1and COX-2, whereas COXIBs inhibit activity of COX-2. PGH, is
sequentially metabolized to PGI, by PTGIS, TxA, by TBXAST1, PGE, by PGES,
PGF, by PTGFS, and PGD, by PTGDS. PCE, binding at EP1-EP4 recep-

tors is known to promote cancer development via multiple mechanisms
(described in detail in the text and Figures 2 and 3). The roles of other
prostanoids and their receptors in gastrointestinal cancer remain unclear
(also detailed in the text).

lective NSAIDs (except for aspirin) at high doses is associated with
unacceptable cardiovascular side effects in patients, especially in
those with a history of atherosclerotic heart disease (27).

Unlike COXIBs and other nonselective NSAIDs, long-term
daily use of aspirin is beneficial for prevention of both cancer and
cardiovascular diseases. Daily use of aspirin has been shown to
suppress polyp growth in FAP patients in two double-blind ran-
domized controlled trials (28, 29) and to reduce risk of adenoma
recurrence in patients with a history of colorectal adenomas in four
randomized controlled trials (30-33). More intriguingly, recent
observational and clinical studies revealed that daily use of aspi-
rin was associated with a reduced risk of metastatic spread (5) and
inhibited the spread of primary tumor cells to other organs after
the diagnosis of localized disease, in particular CRC (7). Based
on recent clinical and epidemiologic evidence, the United States
Preventive Services Task Force endorsed aspirin as the first agent
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for CRC prevention in individuals between the ages of 50 and 69
with specific cardiovascular risk profiles (34). In addition, aspirin
has been shown to enhance the efficacy of chemoradiation for
patients with stage II-III rectal cancer (35), indicating that aspirin
can be used as a neoadjuvant agent for certain cancer treatments.
Aspirin has also been shown to reduce risk of esophageal cancer
and GC (10, 36, 37). Moreover, epidemiologic studies have shown
that regular use of aspirin specifically reduced risk of the subgroup
of patients whose colon tumors expressed higher levels of COX-2
(38), and its use after the diagnosis of CRC at stages I, II, and III
prolonged overall survival, especially among individuals whose
tumors overexpressed COX-2 (39). These results suggest that anti-
tumor effects of aspirin on CRC might depend on the presence of
COX-2. In addition to COX-2 expression, PIK3CA mutation and
HLA class I antigen expression levels also affect the efficacy of
aspirin in improving the overall survival rate of CRC patients (40,
41). However, it is not clear how PIK3CA mutations and HLA class
I antigen expression are involved in antitumor effects of aspirin.

Since NSAIDs are known to cause gastrointestinal and/or car-
diovascular side effects, one of the ways to avoid these side effects
would be to target only the COX-2-derived prostanoids that medi-
ate the tumor-promoting effects of COX-2. In this Review, we
highlight our current understanding of the role of specific pros-
tanoids in gastrointestinal cancer. Understanding how these bio-
active lipids regulate tumor formation, growth, progression, and
metastasis may provide a rationale for developing novel and more
effective strategies in cancer prevention and treatment that avoid
side effects associated with NSAID use.

Prostanoids and gastrointestinal cancer

The biological functions of COX-1/2 enzymes depend on which
COX-derived prostanoids are produced in cancers. Among pros-
tanoids, PGE, is the most abundant in human gastrointestinal
cancers, including CRC and GC (42, 43). More importantly, only
PGE, and PGI, levels are elevated in CRC specimens as compared
with matched normal tissues (44). The steady-state accumula-
tion of PGE, in tumor tissues depends on the relative rates of
COX-2/PGE, synthase-dependent biosynthesis and 15-hydroxy-
prostaglandin  dehydrogenase-dependent (15-PGDH-depen-
dent) degradation (Figure 1). 15-PGDH first converts PGE, into
an inactive 15-keto PGE, that is then further metabolized to a
stable end metabolite (PGE-M) in a series of steps. 15-PGDH is
highly expressed in normal tissues but is ubiquitously lost in many
human cancers, including CRC, GC, and esophageal cancer (45-
48). Since measurement of the urinary PGE, metabolite PGE-M
is an effective way to quantify systemic PGE, production in vivo,
much work has been done to evaluate whether urinary PGE-M lev-
els could serve as a promising biomarker for predicting cancer risk
and prognosis. Emerging epidemiologic evidence and a phase II
biomarker study showed that urinary PGE-M levels were associ-
ated with an increased risk of developing CRC and GC (49-53).
These results suggest that urinary PGE-M could be used as a bio-
marker for predicting gastrointestinal cancer risk and progno-
sis. More importantly, epidemiologic evidence revealed a strong
inverse association between aspirin use and levels of urinary
PGE-M in healthy humans (54) and breast cancer patients (55, 56).
Moreover, a recent study showed that low-dose aspirin (100 mg/d
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Figure 2. PGE, regulation of tumor initiation. PGE, promotes tumor
initiation and growth via DNA methylation and cancer stem cells. PGE,
binds to its receptors (EP1-EP4) to suppress certain tumor suppressor and
DNA repair genes by DNA methylation via induction of expression of the
DNA methyltransferases DNMT1and DNMT3B. PGE, also promotes cancer
stem cell formation and expansion by activating NF-«B via EP4-dependent
PI3K/MAPK pathways.

for 7 days) reduced PGE, levels in human colorectal mucosa by
46% (57). In addition, one epidemiologic study showed that reg-
ular use of aspirin more effectively reduced CRC risk in patients
with higher 15-PGDH expression compared with low 15-PGDH
expression in colonic mucosa (58). These findings further support
the hypothesis that PGE, mediates some of the tumor-promoting
effects of COX-2 as well as the notion that the COX-2/PGE, path-
way is a legitimate target for cancer prevention and treatment.
Direct evidence that PGE, promotes tumor growth came from
animal studies. In mouse models of FAP and/or sporadic CRC,
PGE, treatment dramatically increased both small and large intes-
tinal adenoma burden in Apc™™* mice and significantly enhanced
azoxymethane-induced (AOM-induced) colon tumor incidence
and multiplicity (59, 60). Furthermore, elevating endogenous
PGE, by genetically deleting 15-Pgdh promotes colon tumor
growth in Apc*™®* and AOM mouse models (61). PGE, also reverses
the antitumor effects of an NSAID in Apc™™* mice (62), suggesting
that PGE, is one of the important NSAID targets for cancer preven-
tion and treatment. In accordance with the above results, inhibi-
tion of endogenous PGE, by genetic deletion of microsomal PGE,
synthase 1 (mPges-1) suppresses intestinal tumor formation and
growth in Apc-mutant and AOM models (63, 64). In mouse mod-
els of GC, simultaneous overexpression of COX-2 and mPGES-1
in gastric epithelial cells was sufficient to induce gastric tumor for-
mation (65). Moreover, deletion of EP1 or EP4, but not EP3, atten-
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uates AOM-induced aberrant crypt foci (66, 67). In Apc**¢ mice,
loss of EP2, but not EP1 and EP3, reduces intestinal tumor burden
(68). Interestingly, one report showed that loss of EP3 promoted
colon tumor development in AOM-treated mice (69). In a mouse
model of colitis-associated CRC, loss of EP2 reduced the number
of colon tumors, whereas deletion of EP1 or EP3 increased colon
tumor numbers (70). Collectively, these results demonstrate that
PGE, promotes intestinal tumorigenesis via EP2 and EP4, but not
EP3. The role of EP1in CRC remains unclear.

In evaluating the role of other PGs in CRC, contradictory
results have been reported in mouse models of CRC. For PGD,),
loss of hematopoietic PGD, synthase (PTGDS) accelerated intes-
tinal tumor growth in Apc*™* mice (71), and deletion of Ptgds in
mast cells enhanced colitis-associated tumorigenesis in an AOM/
dextran sulfate sodium (DSS) model (72). In addition, deletion of
DP resulted in an increase of intestinal tumor numbers in Apc™/*
and AOM/DSS-treated mice (70, 73). In contrast, Apc™* mice
expressing transgenic human hematopoietic PTGDS exhibited
fewer intestinal adenomas than controls (71). These results sug-
gest that PGD, serves as a tumor suppressor in CRC. However,
one study showed that disruption of DP did not affect colon tumor
formation in AOM-treated mice (74). For PGL, one report showed
that loss of PGI, synthase (PTGIS) facilitated colon carcinogen-
esis in AOM-treated mice (75). However, the results that loss of IP
did not affect colon tumor formation in AOM/DSS-treated mice
(70, 74) do not support the antitumor effect of PGI, in the colon
via the IP receptor. For PGF, and TxA,, one study showed that
disruption of FP or TP did not affect colon tumor burden in AOM-
treated mice (74), whereas loss of TP increased the number of
colon tumors in AOM/DSS-treated mice (70). More intriguingly,
the expression of DP, FP, and IP receptors is reduced in human
CRC specimens as compared with adjacent normal colon tissues
(76). Clearly, the question of whether PGD,, PGL, PGF, , TxA
and their receptors are involved in gastrointestinal cancer needs
to be further investigated.

To understand the mechanisms underlying effects of PGE, on
cancer development, researchers have been investigating precise-
ly how PGE, promotes tumor formation, growth, progression, and
metastasis. Numerous reports suggest that PGE, promotes can-
cer development via multiple mechanisms, including regulation
of tumor epithelial cell biology, promotion of tumor-associated
angiogenesis, and suppression of tumor immunity (Figure 1).

PGE, and tumor epithelial cells

The mechanisms by which PGE, promotes tumor epithelial cell
proliferation, survival, and migration/invasion as well as tumor-
associated angiogenesis have been reviewed in detail elsewhere
(refs. 22,77; and Figure 1). Here we highlight emerging evidence
indicating that PGE, may be a targetable link between chronic
inflammation and tumor initiation (Figure 2). PGE, has been
shown to promote intestinal tumor initiation and growth by
silencing certain tumor suppressor and DNA repair genes via
DNA methylation (78). In addition, cancer stem cells (CSCs) are
thought to be responsible for tumor initiation, growth, meta-
static spread, relapse, and recurrence. The observation that the
expression of stem cell factors (i.e., CD44, LGR5, SOC-2, and
OCT4) is associated with a worse prognosis in CRC (79) sup-
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Figure 3. A model of PGE -regulated tumor-associated immunosuppression. PGE, regulates immunosuppressive cells and their functions by (a) inducing
MDSC differentiation and production of PD-L1and arginase I; (b) shifting macrophages from M1to M2, inducing PD-L1 expression, and reducing macro-
phage phagocytosis; and (c) inducing differentiation and migration of Tregs. PGE, regulates DCs and their functions through inhibition of differentiation
and maturation; induction of T cell tolerance and IL-23 expression; and induction of dedifferentiation of DCs to MDSCs. PGE, regulates Th cells and their
functions by inducing differentiation and recruitment of Th17, and shifting Th cells from Th1 to Th2. PGE, regulates CD8" T cells and their functions by
induction of proliferation and tumor antigen-specific tolerance and reduction of CD8" T cell cytotoxicity. PGE, regulates NKs and their functions via sup-

pression of cell activation and proliferation and induction of cell apoptosis.

ports this hypothesis. It is also believed that chemotherapy/radi-
ation resistance is due to the presence of CSCs that are not being
properly targeted (80). Moreover, the observation that chemo-
therapeutic and/or radiation therapy enhances COX-2 expres-
sion and PGE, production in cancers prompted investigators to
postulate that PGE, regulates CSC biology. NSAIDs have been
shown to eliminate oncogenic intestinal stem cells via induc-
ing apoptosis in Apc*™* mice (81) and to inhibit sphere forma-
tion in human colorectal carcinoma cells in vitro (82). Strikingly,
PGE, promotes colonic CSC formation and expansion as well as
liver metastasis by activating NF-«B via EP4-dependent PI3K/
MAPK pathways in vivo (83, 84). Similarly, simultaneous over-
expression of COX-2 and mPGES-1 in the gastric epithelial cells
is sufficient to induce CD44" slow-cycling tumor cell expansion
invivo (85), indicating that PGE, induces gastric CSC expansion.
In addition, PGE, released following chemotherapy-induced
apoptotic tumor cells promotes neighboring CSC repopulation
in a xenograft model of bladder cancer (86). Collectively, these
results suggest that reduction of PGE, levels and /or inhibition of
PGE, signaling pathways may not only suppress tumor cell pro-
liferation, survival, and migration/invasion, but may also elimi-
nate CSCs. Targeting CSCs may thus present a novel therapeutic
approach for cancer patients.

PCGE, and tumor-associated immunosuppression
The role of PGE, in regulating immunity and host defense against
viral, fungal, and bacterial pathogens has been reviewed in detail
elsewhere (87). Here we focus on the role of PGE, in tumor-associ-

ated immunosuppression. The tumor microenvironment not only
supports tumor growth, progression, and spread by angiogenesis,
but also allows tumor cells to evade host immunosurveillance.
This tumor-associated immunosuppression is characterized by
enhancement of immunosuppressive cells, a defect of antigen-
presenting cell function, a shift from Th1to Th2 and Th17 immune
responses, and impairment of cytotoxic activity of CD8" T and
natural killer (NK) cells. Reversing immunosuppression remains
one of the major challenges in cancer immunotherapy. It is becom-
ing increasingly evident that PGE, has a broader impact on tumor-
associated immunosuppression than previously thought (Figure
3). However, the mechanisms by which PGE, induces tumor-asso-
ciated immunosuppression remain largely unclear. Understanding
the mechanisms underlying PGE, induction of tumor-associated
immunosuppression may provide a rationale for developing more
effective therapeutic strategies to subvert tumor-induced immu-
nosuppression for patients with gastrointestinal cancer.

PGE, and immunosuppressive cells

Myeloid-derived suppressor cells. In healthy individuals, imma-
ture myeloid cells differentiate into mature myeloid cells
including macrophages, DCs, and granulocytes. However, this
normal physiological process is interrupted in cancer patients.
Myeloid-derived suppressor cells (MDSCs) are a heteroge-
neous group of immature myeloid cells that have been dem-
onstrated to contribute to cancer immunosuppression by sup-
pression of effector T cell activation, proliferation, trafficking,
and viability; by inhibition of NKs; and by activation/expansion
Volume 128  Number7
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of regulatory T cells (Tregs) (88). The levels of MDSCs in the
blood and/or tumor tissue correlated with clinical cancer stage,
metastatic tumor burden, or poor survival in patients with
colon, esophageal, gastric, or pancreatic cancer (89-93). Ani-
mal studies have demonstrated that MDSCs mediate one of the
protumor effects of chronic inflammation. For example, deple-
tion of MDSCs attenuated colitis-associated tumorigenesis in
a mouse model of IBD-associated carcinogenesis (94). Along
the same lines, transfer of MDSCs promoted chronic colonic
inflammation and colitis-associated tumor development via
suppression of colonic CD8" T cell cytotoxicity against tumor
cells in a mouse model of colitis-associated carcinogenesis
(95). Moreover, liver-infiltrating MDSCs formed a premeta-
static niche that ultimately promoted liver metastases without
involvement of T and NK cells in a mouse model of metastatic
spread of CRC (96). MDSCs isolated from premetastatic livers
of immunodeficient NSG mice bearing cecal tumors inhibited
colorectal carcinoma cell apoptosis induced by serum depriva-
tion in cell culture without cell-cell interaction of malignant
cells and MDSCs, suggesting that MDSCs must secrete factors
that promote tumor cell survival (96). In addition, MDSCs have
also been shown to directly enhance CSC formation and pro-
tect proliferating tumor cells from senescence without involve-
ment of T and NK cells in vivo (97, 98).

Multiple studies have shown that inhibition of COX-2 sup-
pressed tumorigenesis by inhibiting tumor-associated MDSC
infiltration in mouse models of CRC and glioma (99, 100) as well
as in mice with implanted mesothelioma and mammary carcino-
ma (101, 102). Moreover, PGE, promoted tumor progression via
inducing the development of MDSCs from bone marrow myeloid
progenitor cells, whereas inhibition of PGE, signaling by deletion
of EP2 or its antagonists blocked this differentiation in mice with
implanted 4T1 murine mammary carcinoma tumors (102). An
EP4 antagonist, E7046, has been shown to reduce tumor-infiltrat-
ing MDSCs and to enhance the antitumor effect of anti-CTLA-4
antibodies in syngeneic mouse models of cancer (103), indicat-
ing that EP4 mediates the effect of PGE, on MDSCs. An in vitro
study showed that PGE, blocked differentiation of monocytes into
DCs and promoted MDSC development (104). Moreover, PGE,
enhanced immunosuppressive function by inducing MDSC-spe-
cific hypermethylation via DNMT3A (105) and by inducing PD-L1
expression (106) and arginase I expression (107) in vitro. How-
ever, the role of PGE, in enhancement of gastrointestinal tumor-
infiltrating MDSCs is still largely unknown, and the mechanisms
by which PGE, regulates MDSC differentiation, expansion, and
immunosuppressive functions are also not fully understood.

Regulatory T cells. Tregs are essential for suppressing immune
responses and maintaining self-tolerance by regulating the activity
of other immune cells. The frequency of Tregs (CD4*CD25'Foxp3*)
is elevated in the peripheral blood and in primary tumors of CRC
and GC patients (108, 109). Tumor-infiltrating Tregs are also asso-
ciated with GC progression and a poor survival rate (110, 111). There
is a positive correlation between PGE, levels and the numbers of
Foxp3* Tregs in the peripheral blood, tumor tissues, and draining
lymph nodes of CRC patients (112). In addition, Foxp3 expression
in tumor-infiltrating Tregs correlates with COX-2 expression and
PGE, levelsin GC (109).
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In mouse models of cancer, inhibition of COX-2 by celecoxib
resulted in reduction of tumor burden and proportion of Tregs in
intestinal lamina propria lymphocytes in Apc™* mice (113). Dele-
tion of mPges-1 attenuated AOM-induced tumor formation with
reduction of Tregs in the colon-draining mesenteric lymph nodes
(64). In addition, treatment with an EP4 antagonist resulted in a
decreased number of Tregs in the peripheral lymph nodes after
UV irradiation (114). An EP1 antagonist inhibited tumor growth
with reduction of tumor-infiltrating Tregs in a colon tumor
implantation model (115). Consistent with these findings, PGE,
promoted tumor growth with induction of Treg expansion and
activity in a mouse model of lung cancer (116). In vitro studies
further demonstrate that PGE, induces Treg differentiation and
migration. For example, PGE, can directly enhance the differen-
tiation of naive CD4* T cells into Tregs (117). PGE, secreted from
breast cancer cells directly induces Treg migration via EP2 and
EP4 (118). In addition, PGE, indirectly attracts Tregs via induc-
tion of CCL22 in mature DCs (119). Collectively, these studies
indicate that PGE, enhances tumor formation and growth via
tumor-infiltrating Tregs (Figure 3).

Macrophages. Macrophages are highly plastic and can be acti-
vated in two polarization states: classically M1 (Thl response) or
alternatively M2 (Th2 response), depending on the context of
their microenvironment. Tumor-associated macrophages (TAMs)
resemble an M2-like phenotype and are a major subpopulation of
tumor-infiltrating immune cells (120). Multiple lines of evidence
indicate that TAMs promote cancer progression and metastasis by
supporting tumor-associated angiogenesis, enhancing tumor cell
migration/invasion and intravasation, and suppressing immuno-
surveillance (121). For example, TAMs contribute to immunosup-
pression by suppressing CD8* T cell cytotoxic activity via stimula-
tion of expression of immune checkpoint receptor ligands such as
PD-L1and B7-H4 and /or via recruitment of Tregs (122,123). TAMs
are recognized as a poor prognostic sign in CRC (124). Moreover,
a meta-analysis of 55 studies indicated that high density of TAMs
correlated with overall poor survival of GC (125).

Treatment with celecoxib resulted in reduction of polyp bur-
den and conversion of TAMs from M2 to M1 in Apc™™* mice (126).
In a colon tumor implantation model, overexpression of 15-PGDH
in tumor tissue is sufficient to redirect the differentiation of intra-
tumoral CD11b cells from immunosuppressive M2-oriented TAMs
to M1 macrophages (127). It has been reported that macrophages
express EP2 and EP4, but not EP1 or EP3 (128), and that EP3 and
EP4 have higher affinity for PGE, than EP1 and EP2 (129). There-
fore, deletion of EP4 in myeloid cells resulted in a reduction of
tumor burden in Apc™™* mice (130). An EP4 antagonist, E7046, has
also been shown to shift TAMs from M2 to M1 macrophages and to
enhance the antitumor effect of anti-CTLA-4 antibodies in synge-
neic murine models of cancer (103). In vitro studies showed that
PGE, promoted M2 macrophage polarization via a CREB/CRTC
pathway in bone marrow-derived macrophages (131) and elimi-
nates CD8" T cells by inducing PD-L1 expression in TAMs (106).
PGE, also inhibited macrophage phagocytosis in vitro (132). In
addition to macrophage function, H. pylori and PGE, cooperated to
upregulate CCL2, which recruited macrophages to gastric tumors
(133). Collectively, these results demonstrate that PGE, promotes
tumor growth via induction of M2 macrophages (Figure 3).
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PCGE, and antigen-presenting cells

Dendritic cells. Professional antigen-presenting cells include
dendritic cells (DCs), macrophages, and B cells. Among antigen-
presenting cells, DCs are central to the host immune response
to tumor antigens. Since little is known about the role of B cells
in gastrointestinal cancer and other solid tumors, we will focus
on DCs here. Circulating DC levels and activity are reduced in
CRC patients as compared with healthy controls, and this corre-
lates with the stage of disease (134, 135). Moreover, highly mature
tumor-infiltrating DCs correlate negatively with tumor stage in
patients with CRC (136) and are associated with better survival in
GC patients (137). DCs include both conventional DCs (cDCs) and
plasmacytoid DCs (pDCs). The studies evaluating levels of circu-
lating cDCs and pDCs in CRC patients have resulted in conflicting
data. One report showed that the levels of pDCs, but not cDCs,
in blood were reduced in CRC patients (138). In contrast, another
study showed that levels of both circulating cDCs and pDCs were
reduced in CRC patients (139). Further studies with large numbers
of patients are necessary to clarify this discrepancy.

In tumor implantation models of colon cancers, PGE, promot-
ed tumor growth by suppressing differentiation of DCs from bone
marrow progenitors (140). Indeed, PGE, suppresses DC differen-
tiation and maturation in vitro and in vivo (141, 142). Moreover,
PGE, inhibits the antigen presentation ability of bone marrow-
derived DCs by reduction of MHC II expression and upregula-
tion of IL-10 via EP2 and EP4 (143). PGE, has also been shown to
switch the function of DCs from induction of immunity to T cell
tolerance via upregulation of CD25 and indoleamine 2,3-dioxy-
genase (IDO), a rate-limiting enzyme in the kynurenine pathway
(144). Furthermore, PGE, shifted the IL-12/IL-23 balance in DCs
signaling via EP2 and EP4 receptors in favor of IL-23, which in turn
increases the number of Th17 cells in vitro (145). More interest-
ingly, PGE, has recently been shown to redirect the differentia-
tion of human DCs into monocytic MDSCs (146). Further work is
necessary to determine whether PGE, promotes tumorigenesis by
inhibition of DC differentiation, maturation, and function in spon-
taneous mouse models of gastrointestinal cancer (Figure 3).

PGE, and T cells

CD4" T helper cells. T helper (Th) cells include Th1, Th2, and Th17
cells. Thl and Th2 cells are characterized by secretion of Thl cyto-
kines (IFN-y, TNF-q, and IL-2) and Th2 cytokines (IL-4, IL-10,
and IL-6), respectively, whereas Th17 cells are characterized by
secretion of IL-17. High Th1/Th2 ratios in tumor tissues are asso-
ciated with better overall survival in CRC patients (147). In addi-
tion, tumor-infiltrating Thl cells are associated with a positive
prognosis, whereas intratumoral Th17 cells are associated with a
poor prognosis in CRC (148, 149). Similarly, high Th1/Th2 ratios in
peripheral blood are associated with a positive postoperative prog-
nosis, whereas high circulating Th17 cells correlate with tumor
progression and poor survival in GC patients (150, 151).

Although an in vivo study indicated that Th17 cells promoted
intestinal tumor burden (152), little is known about the impact of
PGE, on the imbalance of Th1/Th2 response and Th17 cells in the
tumor microenvironment. In vitro studies showed that PGE, shifted
CD4* T cells to Th2 cells by downregulation of Thl cytokines and
upregulation of Th2 cytokines (153, 154). However, another study
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revealed that low concentrations of PGE, induced Thi differentia-
tion and high concentrations inhibited Th1 differentiation (155). In
addition, PGE, exacerbated inflammation and disease severity by
increasing infiltration of Th17 cells into the colonic tissue in a murine
model of IBD (145). Moreover, an EP4 antagonist was found to reduce
accumulation of both Thl and Th17 cells in regional lymph nodes
and suppressed disease progression in an animal model of chronic
inflammation (155). Indeed, in vitro studies revealed that PGE, facili-
tated IL-23-induced differentiation of Th17 from naive T cells (156).
PGE, also directly promotes differentiation of memory CD4" T cells
to Th17 cells by induction of IL-17 expression and reduction of IFN-y
expression (157). Clearly, further research is needed to determine
whether PGE, promotes gastrointestinal tumorigenesis via Th cells.

CD8* cytotoxic T cells. The density of tumor-infiltrating CD8* T
cellsis associated with better survival of CRC and GC patients (148,
158). Although the role of PGE, in regulation of tumor-associated
CDB8" T cells in vivo remains unclear, one in vivo study showed that
PGE, suppressed cytotoxic T lymphocyte (CTL) survival and func-
tion during chronic lymphocytic choriomeningitis virus infection
(159). Moreover, a number of in vitro studies have demonstrated
that PGE, inhibits CD8" T cell proliferation and impairs the CD8*
CTL function. PGE, can directly inhibit CD8" T cell proliferation
by promoting replicative senescence (160). PGE, also suppresses
the cytotoxic activity of CD8* T cells by upregulation of CD94 and
the NKG2A C-type lectin receptor complex (161) or by attenuat-
ing T cell receptor-induced IFN-y release (162). Moreover, PGE,
produced by metastatic renal carcinoma cells shifted CD8* CTLs
toward tumor antigen-specific tolerance during interaction of
CTLs and tumor cells (163). Clearly, these in vitro results need to
be confirmed in animal models of gastrointestinal cancer.

PGE, and innate leukocytes
Innate leukocytes include NK cells, mast cells (MCs), and phago-
cytic cells. The role of MCs in gastrointestinal cancer remains elu-
sive, because contradictory results have been reported in human
CRC specimens and mouse models of CRC. For example, tumor-
infiltrating MCs have been shown to correlate with either positive
or negative prognoses in CRC (164-166). Similarly, elimination of
MCs resulted in reduction of tumors in Apc?#*® mice and mice treat-
ed with carcinogenic 1,2-dimethylhydrazine (167, 168), indicating
that MCs promote polyp formation. In contrast, absence of MCs led
to induction of tumors in Apc™* mice (169), suggesting that MCs
inhibit tumor formation. Therefore, more work needs to be com-
pleted in this area before any definitive conclusions can be made.

NK cells. NK cells are able to recognize and kill transformed
or virus-infected cells but spare normal cells in the absence of
antigen-specific priming. Interestingly, one in vitro result showed
that NK cells selectively recognized and killed colonic cancer stem
cells (CSCs) (170). Suppressed NK cell activity has been found in
human CRC and is an important prognostic factor for the develop-
ment of distant metastases (171, 172). Similarly, tumor-infiltrating
NK cell levels are associated with an improved survival in GC
(173). More intriguingly, intratumoral NK cell levels are negatively
correlated with levels of COX-2 expression in GC (173).

Although there are no available in vivo data showing that PGE,
suppresses NK cell cytotoxicity in gastrointestinal cancer, in vivo
studies demonstrated that treatment of rats with PGE, inhibited
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NK cell activity and enhanced lung metastases (174) and reversed
enhancement of NK cell activity by an NSAID (175). Modulation
of EP4 receptor signaling mediated the effects of PGE, on promo-
tion of breast cancer metastasis and suppression of NK cell func-
tion in a syngeneic murine model of metastatic breast cancer (176).
Substantial in vitro evidence has further demonstrated that PGE,
suppresses NK cell function via multiple mechanisms. PGE, sup-
pressed NK cytotoxicity by inhibiting NK receptors via a cAMP/
PKA pathway (177). Moreover, PGE, not only directly inhibited NK
cell production of IFN-y, which is essential for NK cell functions, but
also attenuated IL-12-induced or IL-18-induced IFN-y expression
in NK cells via EP2 receptor (178, 179). In addition to NK function,
PGE, secreted from GC cells also inhibited NK cell proliferation and
induced apoptosis (173). Taken together, these findings suggest that
PGE, not only suppresses NK functions, but also inhibits NK cell
proliferation and survival (Figure 3). More work is needed to evalu-
ate whether PGE, promotes gastrointestinal tumorigenesis via sup-
pression of NK cells.

Summary

Our focus on prostanoids indicates that PGE, has been shown
to promote gastrointestinal tumor formation, progression, and
metastasis by multiple mechanisms. In addition to the direct
effect of PGE, on tumor cell proliferation, survival, and migra-
tion/invasion, PGE, has been shown to promote CRC initiation,
growth, and metastasis by silencing certain tumor suppressor
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and DNA repair genes via DNA methylation and by induction
of CSC formation and expansion. Strikingly, PGE, is also one of
the tumor-associated immunosuppressive mediators that help to
stimulate immunosuppression by enhancement of immunosup-
pressive cells, a defect in antigen-presenting cell function, a shift
from Thl to Th2 and Th17 immune responses, and/or impair-
ment of functions of CD8" cytotoxic T cells and NK cells, result-
ing in escape of tumor cells from effective immunosurveillance.
Therefore, more selective pharmacologic inhibitors of PGE, sig-
naling not only target tumor cells, including CSC, but also sub-
vert tumor-induced immunosuppression. It is clear that effective
therapies should include elimination of tumor cells, especially
CSCs, inhibition of tumor-associated angiogenesis, and subver-
sion of tumor-induced immunosuppression. Clinical studies are
warranted to evaluate the efficacy and toxicity of these inhibi-
tors, such as EP2 and EP4 antagonists, in gastrointestinal cancer.
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