Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis
Roberta Lugano, Kalyani Vemuri, Di Yu, Michael Bergqvist, Anja Smits, Magnus Essand, Staffan Johansson, Elisabetta Dejana, Anna Dimberg
Roberta Lugano, Kalyani Vemuri, Di Yu, Michael Bergqvist, Anja Smits, Magnus Essand, Staffan Johansson, Elisabetta Dejana, Anna Dimberg
View: Text | PDF
Research Article Oncology Vascular biology

CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis

  • Text
  • PDF
Abstract

Tumor angiogenesis occurs through regulation of genes that orchestrate endothelial sprouting and vessel maturation, including deposition of a vessel-associated extracellular matrix. CD93 is a transmembrane receptor that is upregulated in tumor vessels in many cancers, including high-grade glioma. Here, we demonstrate that CD93 regulates β1 integrin signaling and organization of fibronectin fibrillogenesis during tumor vascularization. In endothelial cells and mouse retina, CD93 was found to be expressed in endothelial filopodia and to promote filopodia formation. The CD93 localization to endothelial filopodia was stabilized by interaction with multimerin-2 (MMRN2), which inhibited its proteolytic cleavage. The CD93-MMRN2 complex was required for activation of β1 integrin, phosphorylation of focal adhesion kinase (FAK), and fibronectin fibrillogenesis in endothelial cells. Consequently, tumor vessels in gliomas implanted orthotopically in CD93-deficient mice showed diminished activation of β1 integrin and lacked organization of fibronectin into fibrillar structures. These findings demonstrate a key role of CD93 in vascular maturation and organization of the extracellular matrix in tumors, identifying it as a potential target for therapy.

Authors

Roberta Lugano, Kalyani Vemuri, Di Yu, Michael Bergqvist, Anja Smits, Magnus Essand, Staffan Johansson, Elisabetta Dejana, Anna Dimberg

×

Figure 8

CD93-knockout mice show reduced β1 integrin activation and disrupted fibronectin matrix during retina angiogenesis.

Options: View larger image (or click on image) Download as PowerPoint
CD93-knockout mice show reduced β1 integrin activation and disrupted fib...
(A) Immunofluorescent staining of active β1 integrin (9EG7) in WT and CD93–/– P6 mouse retina. The vasculature is visualized by isolectin B4. Scale bars: 20 μm. High-magnification images show inhibition of active β1 integrin in the filopodia of CD93–/– compared with WT mouse retina. (B) Immunofluorescent staining of fibronectin and isolectin B4 in WT and CD93–/– P6 mouse retina. Scale bars: 20 μm. High-magnification image shows a disruption of the fibronectin matrix in the proximity of endothelium and filopodia in CD93–/– compared with WT mouse retina.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts