#### **Supplemental Figure legends**



Supplemental Figure 1. Administration of Gal-9 inhibits CD69 expression on T cells.

Representative flow cytometric figures of expression of CD69 and CD62L on CD4<sup>+</sup> T cells (**A**) and CD8<sup>+</sup> T cells (**B**). Frequency of CD69<sup>high</sup>/CD62L<sup>low</sup> and CD69<sup>low/-</sup>/CD 62L<sup>high</sup> cells on CD4<sup>+</sup> T cells (**C**) and CD8<sup>+</sup> T cells (**D**) were analyzed by flow cytometry. Data points represent individual mice (N=10). Data are representative of two independent experiments. Mean±SD. One way ANOVA with Dunnett's multiple comparison was used to test the statistical significance. P value denoted as \*<0.05, \*\*<0.01 and \*\*\*< 0.001 versus control.



# Supplemental Figure 2. Treg profile of BXSB/MpJ mice remain unchanged upon Gal-9 treatment.

Splenocytes from male BXSB/MpJ mice with and without Gal-9 treatment and female littermates were analyzed. % of CD4<sup>+</sup> Foxp3<sup>+</sup> T cells was plotted. Each dot presents individual mice.



Supplemental Figure 3. Gal-9 administration reduces lupus pathogenesis in NZB/W F1 mice.

Splenocytes from Gal-9 treated female, untreated female and age-matched male littermates of NZB/W F1 mice were analyzed for expression of different markers on CD19<sup>+</sup> B cells and CD3<sup>+</sup> T cells. Frequency of MzB cells and T1B cells (**A**) CD44 <sup>high</sup> CD62 <sup>low</sup> and CD44 <sup>low</sup> CD62L <sup>high</sup> (**B**) of Gal-9 treated female along with age matched untreated female and male littermates. Mean  $\pm$  SD of 10 mice in each group are shown. (C) Proteinuria levels and glomeruli size of 32-weekold both Gal-9 treated and untreated control female along with male littermates. Mean  $\pm$  SD. Each dot represents individual mice (D) Serum levels of anti-ds-DNA IgG and IgG2a in Gal-9 treated and untreated control female mice. Mean  $\pm$  SD of 10 mice in each group are shown. One way ANOVA with Dunnett's multiple comparison was used to test the statistical significance for data presented in Figure A, B and Kruskal Wallis testing was performed followed by Dunn's test for Figure C. Mann-Whitney test with Welch's correction was used for data represented in Figure D. P value denoted as \*<0.05, \*\*<0.01 and \*\*\*< 0.001.



Supplemental Figure 4. Gal-9 unable to reduce lupus pathogenesis when treatment started after onset of the disease.

Splenocytes from Gal-9 treated male, untreated male and age-matched female littermates of BXSB/MpJ mice were analyzed for expression of different markers on CD19<sup>+</sup> B cells and CD3<sup>+</sup> T cells. Frequency of MzB cells and T1B cells (A) CD44 <sup>high</sup> CD62 <sup>low</sup> and CD44 <sup>low</sup> CD62L <sup>high</sup> (B) of Gal-9 treated male along with age matched untreated male and female littermates. Mean <u>+</u> SD of 10 mice in each group are shown. (C) Proteinuria levels and glomeruli size of 19-week-old both Gal-9 treated and untreated control male along with female littermates. Mean  $\pm$  SD. Each dot represents individual mice (D) Serum levels of anti-ds-DNA IgG and IgG2c in Gal-9 treated and untreated control male mice. Mean  $\pm$  SD of 10 mice in each group are shown. One way ANOVA with Dunnett's multiple comparison was used to test the statistical significance for data presented in Figure A, B and Kruskal Wallis testing was performed followed by Dunn's test for Figure C. Mann-Whitney test with Welch's correction was used for data represented in Figure D. P value denoted as \*<0.05, \*\*<0.01 and \*\*\*< 0.001.



Supplemental Figure 5. Gal-9 inhibits TLR induced pDC activation in a dose dependent manner.

(A)Human pDCs were stimulated HSV-1, Flu-A and CpG-A with different doses of Gal-9 for 24 hours and levels of IFN- $\alpha$ , TNF- $\alpha$  and IL-6 were analyzed in the culture supernatant. (B)Human primary pDCs from healthy donors were stimulated with CpG-A in the presence or absence of recombinant human galectins 1, 2, 3,4,7,8 and 9. Culture supernatants were analyzed for IFN- $\alpha$  and TNF- $\alpha$ . Data shown are mean of three independent experiments. Human pDCs were stimulated with CpG-A, Gal-9, control antibodies, anti-Gal-1 antibodies and anti-Gal-9 antibodies alone or with different combinations for 24 hrs. The culture supernatants were analyzed for levels of IFN- $\alpha$  (**C**). Human pDCs were stimulated with CpG-A along with Gal-9 for 24 hrs and the cells were stained using Annexin-V kit and analyzed by FACS (**D**) Human pDCs stimulated with CpG-A and Flu-A and Gal-9 for 24 hours and stained for ICOSL expression by FACS (**E**). Kruskal Wallis testing was performed followed by Dunn's test for statistical analysis. P value denoted as \*<0.05, \*\*<0.01 and \*\*\*<0.001.



Supplemental Figure 6. Gal-9 specifically inhibits TLR mediated PC differentiation.

Human peripheral B cells were stimulated with CpG-B, anti-CD40 antibodies, anti-IgM, IL-21 and Gal-9 in different combinations as indicated. On day 7 following activation, PCs were quantified by flow cytometry, identified as CD19<sup>+/lo</sup> CD27<sup>high</sup> CD38<sup>hi</sup> cells. The number indicates percent PCs of total CD19<sup>+</sup> B cell population. Kruskal Wallis testing was performed followed by Dunn's test for statistical analysis. P value denoted as \*<0.05, \*\*<0.01.



## Supplemental Figure 7. Gal-9 binds to the surface of B cells.

(A)Human B cells were incubated with different concentrations of biotinylated Gal-9 (Bt Gal-9), probed with streptavidin-APC analyzed by FACS. Overlaid histograms of the binding of Bt Gal-9 to the surface of human B cells. (B) Biotin labelled (Bt Gal-9) and unlabeled (Cold Gal-9) were injected to C57/Bl6 mice and after two hrs, different peripheral cells were analyzed to detect the binding of Bt Gal-9 to the surface. Representative overlaid histograms of 3 mice in each group.



Supplemental Figure 8. Inhibition of TLR induced pDC activation by Gal-9 is independent of Tim-3.

Human pDCs were stimulated with CpG-A, Flu-A, Gal-9, Tim-3 recombinant protein, anti-TIM-3 antibodies and isotype IgG alone or in various combinations for 24 hours. The culture supernatants were analyzed for levels of IFN- $\alpha$  and TNF- $\alpha$  (**A**, **B**). Data represented is mean<u>+</u>SD of 4 independent experiments. Kruskal Wallis testing was performed followed by Dunn's test for statistical analysis. P value denoted as \*\*\*< 0.001.



Supplemental Figure 9. Gal-9 inhibits interaction of anti-CD44 antibodies to the surface of human B cells.

Human B cells were incubated with anti-CD44 antibodies with and without Gal-9 and analyzed by FACS. Overlaid histograms of the binding of anti-CD44 antibodies to the surface of human B cells with and without Gal-9. Data representative of five independent experiments.



## Supplemental Figure 10. Colocalization of TLR9 with the lysosomal marker Lamp1.

Gal-9 treatment did not affect CpG-A induced TLR9 colocalization with the lysosomal marker Lamp1 in primary human pDCs as detected by fluorescent microscopy. After CpG-A treatment in the presence (top panel) or absence (bottom panel) of Gal-9, pDCs were stained with anti-TLR9 antibody labeled in A488 (Green) and anti-Lamp1 antibody labeled in A594 (Red) and then imaged by confocal microscopy . Colocalization of TLR9 and Lamp1 is shown.

Quantification of seven images with multiple cells each from two separate donors. Unpaired student's T test was performed to test the statistical significance.



Supplemental Figure 11. Inhibitory effect of Gal-9 is independent of TGF-βRI-Smad-3 pathway.

Human pDCs were stimulated with CpG-A, Gal-9, anti-CD44ab and TGF- $\beta$  in various combinations for 6 hrs and expression of intracellular TNF- $\alpha$  and IFN- $\alpha$  was analyzed by FACS. Cells in the upper right quadrant were positive for both cytokines (**A**). Human pDCs were stimulated with CpG-A, Gal-9, SIS3 and anti-TGF- $\beta$ RI antibody in various combinations for 24

hrs and levels of IFN- $\alpha$  in the culture supernatant were analyzed (**B**). Data are representative of three independent donors. Kruskal Wallis testing was performed followed by Dunn's test for statistical analysis. P value denoted as \*\*\*< 0.001.



#### Supplemental Figure 12. Gal-9 inhibits mTOR-p70S6K pathway in human B cells.

Human peripheral B cells were treated with CpG-B with or without Gal-9 for 15 minutes and the cell lysates were analyzed by western blotting. Data are representative three independent experiments.

## **Supplemental methods**



Representative figure showing the gating strategy in flow cytometry.

Lymphocytes were gated in a forward scatter (FSC)/ side scatter (SSC) plot. The dead cells from the lymphocyte population were excluded using live/dead blue stain kit. Live lymphocytes were further analyzed into T cells (CD3<sup>+</sup> CD4<sup>+</sup>), pDCs (B220<sup>+</sup>, PDCA-1 <sup>+</sup>and SiglecH<sup>+</sup>) and B Cells (CD19<sup>+</sup>). Expression of CD44 and CD62 by T cells and CD21 and CD23 by B cells were analyzed.

#### Measurement of TLR9 internalization with Galectin 9 treatment

PDCs were incubated with CPG-A with or without the addition of Gal-9 for two hours. Cells were fixed and stained with anti-human Lamp1-A647 (H4A3), anti-human TLR9-A488 (PA-5-46898). Cells were imaged in 96 well glass bottom plates using a Zeiss 880 microscope, and images were analyzed using Imaris imaging software (Bitplane). For analysis of colocalization a similar fluorescent threshold was applied to all images, and percentage of TLR9 fluorescent signal overlapping with Lamp1 fluorescent signal was quantified from 7 images with multiple cells per image.