

Supplemental Figure 1. Protection in IL-1 $\beta^{-/-}$ mice is not limited to a specific skin location. The location of skin inoculation of the bacteria were reversed in which the 1° infection was performed in the upper back and the 2° infection performed on lower back (n=5/group). (A) Mean total lesion size (cm²) ± SEM. (B) Mean total flux (photon/s) ± SEM. **P*<0.05, as measured by two-way ANOVA.

Supplemental Figure 2. Neutrophils from previously infected IL-1 $\beta^{-/-}$ mice do not confer protection to naïve IL-1 $\beta^{-/-}$ mice. (A) Timeline for transfer of neutrophils harvested from day 28 IL-1 $\beta^{-/-}$ mice to naïve IL-1 $\beta^{-/-}$ mice. (B) Mean total lesion size (cm²) ± SEM. (C) Mean total flux (photon/s) ± SEM. **P* <0.05, as measured by two-way ANOVA.

Supplemental Figure 3. Transfer of naïve lymph node cells from IL-1 $\beta^{-/-}$ mice do not confer protection. (A) Timeline of harvesting and transferring of 5×10^6 lymph node cells from naïve IL-1 $\beta^{-/-}$ mice into naïve IL-1 $\beta^{-/-}$ recipients (n=5/group). (B) Mean total lesion size (cm²) ± SEM. (C) Mean total flux (photon/s) ± SEM.

Supplemental Figure 4. Anti-CD4 antibody selectively depletes CD4⁺ T cells. (A,B) Representative flow plots (A) and mean percentages of CD4⁺ and CD8⁺ T cells \pm SEM in peripheral blood (B) and lymph nodes (LNs) (C) following isotype or anti-CD4 antibody treatment at the experimental endpoint (14 days after *S. aureus* skin inoculation). **P* <0.05, as measured by a two-tailed Student's t-test.

Supplemental Figure 5. Purification of $\gamma\delta$ T cells from lymph nodes harvested on day 28 from previously infected IL-1 $\beta^{-/-}$ mice. (A) Representative flow plots with percentages of TCR $\gamma\delta$ + cells in Flow Through or Purified TCR $\gamma\delta$ populations prior to transfer into naïve IL-1 $\beta^{-/-}$ mice. (B) Representative flow plots with percentages of CD4⁺ T cells prior to transfer into naïve IL-1 $\beta^{-/-}$ mice.

Supplemental Figure 6. Transfer of lymph node cells from day 28 IL-1 β -/- mice does not provide protection to naïve wt mice. (A) Timeline of harvesting and transferring of 5×10^6 lymph node cells from d28 IL-1 β ^{-/-} mice into naïve wt recipients (n=5/group) (B) Mean total lesion size (cm²) ± SEM. (C) Mean total flux (photon/s) ± SEM.

Supplemental Figure 7. Expression of homing and adhesion molecules on $\gamma\delta$ T cells. $\gamma\delta$ T cells were isolated from naïve and day 28 IL-1 $\beta^{-/-}$ mice (n=5/group) and were assessed for CCR4, CD103 and CLA expression by FACS. Mean percentages of CCR4⁺, CD103⁺ and CLA⁺ $\gamma\delta$ T cells ± SEM. **P* <0.05, †*P* <0.01, ‡*P* <0.001 as measured by a Student's t-test.

Gene	Mouse	Spearman TRGV5/6	<i>P</i> value	Spearman TRDV4	P value
SKINT1	IL-1β-/-	-0.19	3.99×10^{-01}	-0.12	5.91 10 ⁻⁰¹
SKINT3	IL-1β-/-	0.05	8.36×10^{-01}	-0.06	7.82 10 ⁻⁰¹
SKINT9	IL-1β-/-	-0.18	3.85×10^{-01}	-0.20	3.74 10 ⁻⁰¹
BTNL2	IL-1β-/-	0.62	2.13×10^{-03}	0.72	1.66 10 ⁻⁰⁴

Supplemental Figure 8. Spearman correlations of reads mapping to butyrophilin family members with reads mapping to the CDR3-encoding nt sequences of the dominant *TRG*-encoded and *TRD*-encoded CDR3 aa sequences identified in Figure 8B in lymph nodes from IL-1 $\beta^{-/-}$ mice. Correlations were assessed between the following butyrophilin family members (*BTN1A1*, *BTNL1*, *BTNL2*, *BTNL4*, *BTNL6*, *BTNL9*, *BTNL10* and *ERG3*) including the *SKINT* family members (*SKINT1-SKINT11*) and only *BTLN2* had a statistically significant correlation (shown in red). For comparison, the correlations with *SKINT1*, *SKINT3* and *SKINT9* are shown because these butyrophilin family members have been previously implicated as ligands or co-stimulatory molecules for DETCs, which have the same CDR3 aa sequences as the expanded *TRG*-encoded and *TRD*-encoded CDR3 aa sequence identified in Figure 8B.

Supplemental Figure 9. Representative FACS plots for the isotype control mAbs corresponding to the intracellular staining for anti-IL-17A, anti-IL-22, anti-TNF and anti-IFNγ mAbs used in Figure 7A.