Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
The relationship between cardiac endothelium and fibroblasts: it’s complicated
Ravi Karra, … , Agoston O. Walter, Sean M. Wu
Ravi Karra, … , Agoston O. Walter, Sean M. Wu
Published June 26, 2017
Citation Information: J Clin Invest. 2017;127(8):2892-2894. https://doi.org/10.1172/JCI95492.
View: Text | PDF
Commentary

The relationship between cardiac endothelium and fibroblasts: it’s complicated

  • Text
  • PDF
Abstract

Coronary revascularization is an effective means of treating ischemic heart disease; however, current therapeutic revascularization strategies are limited to large caliber vessels. Because the mammalian heart scars following cardiac injury, recent work showing that cardiac fibroblasts can transdifferentiate into new coronary endothelium raises a new and exciting approach to promoting endogenous revascularization following cardiac injury. In this issue of the JCI, He et al. report on their employment of a battery of lineage-tracing tools to address the developmental origins of fibroblasts that give rise to new endothelial cells. Surprisingly, cardiac fibroblasts did not appear to contribute appreciably to regeneration of cardiac endothelium. Instead, cardiac endothelial cells were likely to proliferate and generate new endothelium following injury. As these conclusions diverge from prior findings, additional work will be required to understand the sources that generate cardiac endothelium in new blood vessels after injury. Clarification of the origins of coronary endothelial cells during cardiac repair is essential for identifying improved approaches to revascularizing damaged myocardium in patients with ischemic heart disease.

Authors

Ravi Karra, Agoston O. Walter, Sean M. Wu

×

Full Text PDF | Download (382.00 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts