
The early growth response gene prod-
uct (Egr-1) is a zinc finger transcription
factor (1, 2) first identified because of
its characteristic pattern of expression
following exposure of cells to mediators
associated with growth and differentia-
tion. Egr-1 (also called Zif268, NGF1-A,
Krox24, or TIS8) has been termed an
immediate-early response protein,
based on the brisk kinetics of its induc-
tion, within minutes of a stimulus, and
its rapid decay, often within hours.

The initial association of Egr-1 with
growth and development suggested that
it might act in cell differentiation, and
cell culture studies indicated a crucial
role for Egr-1 in promoting differentia-
tion along a macrophage lineage (3).
However, the generation of Egr-1–null
mice by S. Lee and colleagues provided a
new perspective on Egr-1 biology (4).
Monocyte differentiation, they found, is
unaffected by the deletion of the Egr-1
gene, and knockout animals appear nor-
mal with the exception of infertility in
homozygous null females (4). These
observations indicated that physiologic

roles of Egr-1 might only become mani-
fest in response to environmental chal-
lenge. Consistent with this possibility, in
vitro studies identified a number of gene
products — TNFα, ICAM-1, CD44,
PDGF A/B chain, TGFβ, M-CSF, among
others (5) — that are induced by Egr-1
and that participate in the physiological
response to various kinds of stress.

Recent work from Khachigian and col-
leagues has provided an important step
forward in our understanding of Egr-1
biology (6, 7). This group has found that
the promoter from the gene for PDGF A
chain contains a GC-rich element with
overlapping binding sites for Egr-1 and
Sp1. Under quiescent conditions, these
sites are occupied by Sp1, which is
believed to be required for basal expres-
sion of this gene. However, following
stimulation of cells with phorbol ester,
levels of Egr-1 rise, allowing Egr-1 to dis-
place Sp1 from this region (6). Support
for the in vivo relevance of Egr-1–mediat-
ed gene expression comes from experi-
ments with denuding injury to the rat
aorta; Egr-1 and a variety of Egr-1 target

genes are induced in endothelium at the
wound margins (7). Cultured endothelial
monolayers subjected to an analogous
mechanical injury release fibroblast
growth factor 2 (FGF2), which stimulates
Egr-1 expression in this system (8). Fur-
thermore, a DNA-enzyme that specifical-
ly cleaves Egr-1 mRNA blocks arterial
neointima formation in a rat carotid
angioplasty model (9). Although experi-
ments with the DNA enzyme approach
can be difficult to interpret and the rele-
vance of the rat angioplasty model to
human neointimal disease is controver-
sial, these observations clearly support a
role for Egr-1 in the response to vascular
injury (Figure 1).

The pathological role of Egr-1 in
blood vessels is not limited to its pro-
motion of neointimal formation fol-
lowing mechanical injury. There is an
unexpected role for Egr-1 during
hypoxemia, when it triggers deposition
of fibrin in the vasculature. Recent
studies have established cause-effect
relationships between hypoxemia, Egr-
1 expression, and fibrin deposition in
this system (10–13) (Figure 2). Mice
subjected to normobaric hypoxia rapid-
ly induce expression in the lung of
active Egr-1, which drives expression of
tissue factor (TF), the cell-surface cofac-
tor responsible for initiation of coagu-
lation. Increased TF, which promotes
intravascular fibrin accumulation (10),
is observed in mononuclear phagocytes
and smooth muscle cells, the same cells
exhibiting increased Egr-1 in response
to oxygen deprivation (11). The central
role of Egr-1 in this pathway is clear
from observations in Egr-1–null mice,
which do not induce TF and which, as a
consequence, remain free of vascular
fibrin deposits under these conditions.

The best-characterized pathway for
biosynthetic adaptation to oxygen dep-
rivation involves hypoxia-inducible fac-
tor-1 (HIF-1), which promotes expres-
sion of genes critical for survival in the
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Figure 1
Schematic depiction of Egr-1 induction in response to mechanical injury to the vessel wall. Egr-1
expression is especially evident in endothelial cells at the wound margin, as well as in the migrat-
ing and proliferating smooth muscle cells in the forming neointima. FGF2, as well as other fac-
tors yet to be identified, are likely to be involved in Egr-1 induction in this setting.



oxygen-scarce environment (14). Howev-
er, the hypoxia-triggered pathway involv-
ing Egr-1 is independent of HIF-1 and
appears to act through the rapid activa-
tion of protein kinase C isoform βII
(PKCβII) when oxygen levels decline.
This kinase initiates a signaling cascade
that activates the transcription factor
Elk-1 and thereby initiates transcription
of Egr-1 (11, 12). Consistent with this
model, Egr-1 and TF are not expressed in
hypoxic mice that carry a homozygous
deletion in PKCβ, although these ani-
mals retain HIF-1–dependent responses
(13). This novel pathway for hypoxia-
inducible responses may well be relevant
to the pathobiology of ischemic injury.

In each of these studies, Egr-1 appears
to participate in the acute response to
physical injury or hypoxia, but, in the
current issue of the JCI, McCaffrey and
colleagues demonstrate sustained Egr-
1 expression in atherosclerosis, a chron-
ic condition (15). These investigators
harvested RNA from the fibrous cap of
carotid endarterectomy samples and
used a cDNA expression array to ana-
lyze changes in gene expression associ-

ated with the disease. They demon-
strated an approximately 5-fold
increase in Egr-1 mRNA in lesions,
compared with adjacent media. Cru-
cially, these lesions also showed an
increase in known Egr-1 target tran-
scripts, such as TNFα, ICAM-1, M-CSF,
that are believed to contribute to this
disease process. In addition, they con-
firmed that the Egr-1 protein accumu-
lates during postnatal development in
atherosclerosis-prone mice and is
enriched in atherosclerotic lesions,
especially in smooth muscle cells.

At this juncture, these observations
represent nothing more than an associ-
ation, although a provocative one,
between Egr-1 and the atherogenic
process. The challenge remains to
establish cause-effect relationships per-
tinent to outcome, and the availability
of Egr-1–null mice is likely to be critical
for this purpose, as well as in the iden-
tification of physiologically relevant
targets of Egr-1. It will also be impor-
tant to dissect the regulation Egr-1
expression and activity, including the
role of the inducible corepressor NAB2

(16), and to determine if other members
of the Egr-1 family contribute to
atherogenesis or other conditions, such
as neointimal hyperplasia or thrombo-
sis. If such studies implicate Egr-1 as an
important pathogenetic factor, the
apparent well-being of Egr-1–null mice
(4) suggests that Egr-1 expression or
function could be inhibited for thera-
peutic purposes with little ill effect.
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Figure 2
Schematic depiction of Egr-1 induction in the vessel wall and mononuclear phag-
ocytes/macrophages in response to hypoxemia. Oxygen deprivation causes expression of Egr-1 in
mononuclear phagocytes and vascular smooth muscle cells thereby activating downstream target
genes such as TF. Expression of TF in hypoxemic/ischemic vasculature provides a mechanism trig-
gering the procoagulant pathway and, potentially, resulting in fibrin deposition.


