Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism
Elizabeth J. Tarling, … , Martin Turner, Thomas Q. de Aguiar Vallim
Elizabeth J. Tarling, … , Martin Turner, Thomas Q. de Aguiar Vallim
Published September 11, 2017
Citation Information: J Clin Invest. 2017;127(10):3741-3754. https://doi.org/10.1172/JCI94029.
View: Text | PDF
Research Article Metabolism

RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism

  • Text
  • PDF
Abstract

Bile acids function not only as detergents that facilitate lipid absorption but also as signaling molecules that activate the nuclear receptor farnesoid X receptor (FXR). FXR agonists are currently being evaluated as therapeutic agents for a number of hepatic diseases due to their lipid-lowering and antiinflammatory properties. FXR is also essential for maintaining bile acid homeostasis and prevents the accumulation of bile acids. Elevated bile acids activate FXR, which in turn switches off bile acid synthesis by reducing the mRNA levels of bile acid synthesis genes, including cholesterol 7α-hydroxylase (Cyp7a1). Here, we show that FXR activation triggers a rapid posttranscriptional mechanism to degrade Cyp7a1 mRNA. We identified the RNA-binding protein Zfp36l1 as an FXR target gene and determined that gain and loss of function of ZFP36L1 reciprocally regulate Cyp7a1 mRNA and bile acid levels in vivo. Moreover, we found that mice lacking hepatic ZFP36L1 were protected from diet-induced obesity and steatosis. The reduced adiposity and antisteatotic effects observed in ZFP36L1-deficient mice were accompanied by impaired lipid absorption that was consistent with altered bile acid metabolism. Thus, the ZFP36L1-dependent regulation of bile acid metabolism is an important metabolic contributor to obesity and hepatosteatosis.

Authors

Elizabeth J. Tarling, Bethan L. Clifford, Joan Cheng, Pauline Morand, Angela Cheng, Ellen Lester, Tamer Sallam, Martin Turner, Thomas Q. de Aguiar Vallim

×

Figure 5

ZFP36L1 gain of function reduces CYP7A1 and bile acid levels in vivo.

Options: View larger image (or click on image) Download as PowerPoint
ZFP36L1 gain of function reduces CYP7A1 and bile acid levels in vivo.

(...
(A) Mouse and (B) human (WT and mutant) Cyp7a1 3′-UTR cloned downstream of a luciferase reporter and then transfected in IHHs in combination with increasing amounts of a mouse Zfp36l1 expression plasmid. Luciferase activity was determined after 24 hours and normalized to β-gal and is expressed as the fold change (n = 6 wells/condition). (C) ZFP36L1 mRNA and protein, (D) CYP7A1 mRNA and protein, and (E) mRNA levels of bile acid synthesis genes in male C57BL/6 WT mice treated with either adenovirus-control (Ad-Ctr) or Ad-Zfp36l1 (n = 10 mice/group). (F) Bile acid concentration in gall bladders and (G) plasma cholesterol levels in Ad-Ctr– or Ad-Zfp36l1–treated mice (n = 10 mice/group). Gene expression analysis was determined by qRT-PCR and normalized to Tbp. Data represent the mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, by 1-way ANOVA (A and B) and Student’s t test ( C–G).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts