Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis
Trieu-My Van, … , Nikoletta Papadopoulou, Manolis Pasparakis
Trieu-My Van, … , Nikoletta Papadopoulou, Manolis Pasparakis
Published June 19, 2017
Citation Information: J Clin Invest. 2017;127(7):2662-2677. https://doi.org/10.1172/JCI92508.
View: Text | PDF
Research Article Hepatology Inflammation

Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis

  • Text
  • PDF
Abstract

The mechanisms that regulate cell death and inflammation play an important role in liver disease and cancer. Receptor-interacting protein kinase 1 (RIPK1) induces apoptosis and necroptosis via kinase-dependent mechanisms and exhibits kinase-independent prosurvival and proinflammatory functions. Here, we have used genetic mouse models to study the role of RIPK1 in liver homeostasis, injury, and cancer. While ablating either RIPK1 or RelA in liver parenchymal cells (LPCs) did not cause spontaneous liver pathology, mice with combined deficiency of RIPK1 and RelA in LPCs showed increased hepatocyte apoptosis and developed spontaneous chronic liver disease and cancer that were independent of TNF receptor 1 (TNFR1) signaling. In contrast, mice with LPC-specific knockout of Ripk1 showed reduced diethylnitrosamine-induced (DEN-induced) liver tumorigenesis that correlated with increased DEN-induced hepatocyte apoptosis. Lack of RIPK1 kinase activity did not inhibit DEN-induced liver tumor formation, showing that kinase-independent functions of RIPK1 promote DEN-induced hepatocarcinogenesis. Moreover, mice lacking both RIPK1 and TNFR1 in LPCs displayed normal tumor formation in response to DEN, demonstrating that RIPK1 deficiency decreases DEN-induced liver tumor formation in a TNFR1-dependent manner. Therefore, these findings indicate that RIPK1 cooperates with NF-κB signaling to prevent TNFR1-independent hepatocyte apoptosis and the development of chronic liver disease and cancer, but acts downstream of TNFR1 signaling to promote DEN-induced liver tumorigenesis.

Authors

Trieu-My Van, Apostolos Polykratis, Beate Katharina Straub, Vangelis Kondylis, Nikoletta Papadopoulou, Manolis Pasparakis

×

Figure 3

RIPK1 promotes DEN-induced liver tumorigenesis.

Options: View larger image (or click on image) Download as PowerPoint
RIPK1 promotes DEN-induced liver tumorigenesis.
(A and B) Graphs depicti...
(A and B) Graphs depicting BW (A) and serum ALT levels at 32 weeks of age (B) of DEN-injected Ripk1fl/fl and RIPK1LPC-KO mice. Mean ± SEM (A). (C) Representative photographs of livers and H&E-stained liver sections from DEN-injected Ripk1fl/fl and RIPK1LPC-KO mice at the age of 32 weeks. Scale bars: 1 cm (left panels); 100 μm (right panels). HCC/dysplastic nodule areas are marked with an asterisk. (D) Tumor load in mice with indicated genotypes as estimated by quantification of tumor size distribution. ***P < 0.005, χ2 test. (E) Graphs depicting number of tumors per liver. **P < 0.01, Mann-Whitney U test. (F) Histopathological evaluation of HCC development in 32-week-old mice with the indicated genotypes. Each color bar represents the percentage of livers per genotype in which the indicated stage was identified as the most advanced disease stage. (G–I) Liver weight/BW ratio (G), grade of steatosis (H), and grade of inflammation (I) in 32-week-old mice injected with DEN.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts