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Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and
yeast through recognition of riboflavin metabolites presented by the MHC class I-like molecule MR1. Here, we demonstrate
using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD)
target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their
preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote
gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion
specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting
MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and
colon tissue from IL-17A-/- and MR1/- mice identified analogous shifts in microbiome operational taxonomic units (OTU)

and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A-dependent mechanisms.
Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high

Introduction

Acute graft-versus-host disease (GVHD) remains a major complica-
tion of allogeneic bone marrow transplantation (BMT) and results in
considerable morbidity and mortality. Major target organs include
the gastrointestinal (GI) tract, liver, and skin, all of which represent
tissues with extensive environmental interfaces (1). Acute GVHD is
initiated during conditioning when inflammation invoked by chemo-
radiotherapy serves to enhance antigen-presenting cell (APC) func-
tion and the costimulation of T cells in tissue (1). Recipient alloan-
tigens are thus presented to donor T cells that differentiate along
proinflammatory lineages defined by Thl and Th17 paradigms (2).
Target organ damage is mediated by both inflammatory cytokines
generated by T cells and mononuclear cells together with T cell
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frequency in humans, likely represent an important population in clinical BMT.

cytotoxic pathways. Danger-associated molecular pattern (DAMP)
and pathogen-associated molecular pattern (PAMP) signaling by-
products of cellular damage induced by chemoradiotherapy and
microbiome-derived products are critical in driving this system-wide
inflammation (2, 3).

The primacy of the GI tract in controlling the severity of GVHD
is well established (4), and it is increasingly clear that, as the epithe-
lial barrier loses integrity, microbiota-derived PAMPs induce the
release of IL-17 and IL-22, among other cytokines, whose primary
function is to limit pathogen spread. IL-17 in the GI tract is pro-
duced by conventional T cells, y3 T cells, and the recently described
mucosal-associated invariant T (MAIT) cells (5-7), the latter of
which are exquisitely positioned to respond to microbial invasion
by nature of their residence within the lamina propria of the small
and large intestine (6-9). MAIT cells typically express semiinvari-
ant T cell receptor (TCR) repertoires consisting of TRAV1 (Val9
in mice or Vo7.2 in humans) joined to Ja33 (also Jal2 and Jo20 in
humans) and limited TCR chain pairing (19 and 13 in mice, 6 and
20 in humans) (10). These innate-like T cells respond to vitamin
B2-and B9-derived metabolites presented by the MHC class I-like
molecule MR1 to rapidly secrete effector cytokines (11-15). The
riboflavin-based precursors are produced by a range of bacteria,
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Figure 1. MAIT cells are present in GVHD target organs. Lymphocytes from
naive mouse peripheral blood (A), liver (B), lung (C), SI (D), and colon (E)
were stained with the MR1 tetramer (5-OP-RU) or control tetramer (6-FP)
and analyzed by flow cytometry. Gates were set based on the control
tetramer and cells from MR1/~ mice. Mouse MAIT cells were defined as
CD3*. Representative dot plots are shown.

jci.org


https://www.jci.org
https://www.jci.org

The Journal of Clinical Investigation

RESEARCH ARTICLE

A B
100 A
= 804
£ @ BALB/c —» B6.WT )
£ 60 -@ BALB/c > B6.MR1-- 3
(%] —_
£ 40- - BALB/c (TCD) - B6.MR1-- E
3 =
nqh_) 204 P <0.0001 o
0+—r— —
0 7 14 21 28 35 42 49 56 6 0 7 14 21 28 35 42 49 56 63
Days after SCT Days after SCT
100 A—A D 5x10°T
6.
T 807 @ B6.WT BM + T — B6D2F1 54
s - B6.MR1-- BM + T > B6D2F1 g 4_
§ 601 2x10°T & B6.MR1--TCD BM - B6D2F1 N
& 407 g 2x10°T
9 ‘E 24
2 204 5x10°T 5 14
0 —— —T— 0
0 7 14 21 28 35 42 49 56 63 0 7 14 21 28 35 42 49 56 63
Days after SCT Days after SCT
E F
100
= 80- @ GCSF B6.WT — B6D2F1
2 -@ GCSF B6.MR1~- — B6D2F1 g
3 601 - GCSF B6.WT TCD — B6D2F1  §
< 401 $
o £
& 201 (&)
0

0 14 28 42 56 70 84 98
Days after SCT

0 14 28 42 56 70 84 98
Days after SCT

Figure 2. Recipient MAIT cells provide protection from GVHD. (A and B) G-CSF-mobilized BALB/cWT splenocytes (25 x 10°) were transplanted to lethally
irradiated B6.WT or B6.MR1~~ mice and survival and clinical scores monitored. Data pooled from 2 independent experiments. n = 12 per group; TCD group,

n = 3. (C and D) Grafts composed of BEWT BM (5 x 10°) and B6.WT T cells (2 or 5 x 10° as indicated) or B6.MR1”/- BM and B6.MR1/- T cells were transplanted
into lethally irradiated B6D2F1 recipients and survival and clinical scores determined. Data combined from 2 independent experiments are shown. n = 16 per
group; TCD group, n = 7. (E and F) Lethally irradiated B6D2F1 recipients were transplanted with G-CSF-mobilized splenocytes (10 x 10°) from B6WT or B6.MR17/-
donors. Data combined from 2 replicate experiments are shown. n = 16 per group; TCD group, n = 6 mice. Survival represented by Kaplan-Meier analysis.

yeast, and fungi (and not mammalian cells), such as Escherichia
coli, Staphylococcus aureus, Mycobacterium tuberculosis, Salmonel-
la typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae,
Lactobacillus acidophilus, and Candida albicans, to mention a few
(16). This unique activation pathway provides an additional mech-
anism of determining nonself from self. Previous work in murine
models and humans has shown that MAIT cells possess potent
antimicrobial functions, primarily due to the rapid, diverse, and
expansive cytokine production by these cells (6, 16-22). However,
a role for MAIT cells in transplantation outcomes has not been
reported to date. We hypothesized that MAIT cells would be intri-
cately involved in regulating GVHD, as they are located at mucosal
sites where GVHD manifests. We thus have utilized MAIT cell-
deficient MR17~ mice and MRI1 tetramers (7, 8, 11) to characterize
the role of MAIT cells in the context of BMT.

Results
MAIT cells are present in GVHD target organs. MAIT cells were tra-
ditionally identified in adult humans using the surface markers

jci.org

Vo7.2 and CD161, where they are found in relatively high fre-
quencies in the blood, liver, and GI tract (8, 23). However, identi-
fication of mouse MAIT cells using readily available surface mark-
ers is not feasible due to an absence of reagents and a specific
surface-marker phenotype to distinguish these cells from con-
ventional T cells. Using mouse MR1 tetramers loaded with either
an activating MAIT cell ligand (5-[2-oxopropylideneamino]-
6-D-ribitylaminouracil [5-OP-RU]) or a nonactivating ligand
(6-formylpterin [6-FP]) (7, 11) we were able to screen and specifi-
cally identify mouse MAIT cells by flow cytometry in various organs
from naive mice. Lymphocytes from the peripheral blood, liver,
lungs, small intestine (SI), and colon of naive mice were stained
with the common T cell markers CD3, CD4, and CD8 and the MR1
tetramers described herein. MR17- mice, which lack MAIT cells,
were used as an additional control to show specificity of the MR1
tetramer. MAIT cells were mostly CD3*CD4"¢CD8"¢, with much
smaller numbers of CD3*CD4* and CD3*CD8* MAIT cells, and this
varied among the tissues examined, consistent with recent studies
(6-8). Compared to peripheral blood (Figure 1A), a higher frequen-
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Figure 3. Recipient MAIT cells attenuate acute GVHD within the GI tract.
B6.WT and B6.MR1/~ mice were transplanted with G-CSF-mobilized
BALB/cWT splenocytes or TCD splenocytes. (A) Serum cytokine analysis
was conducted on days 4, 7, and 14 after transplant. Day 4 data from 1-2
experiments. n = 5-10 per group; day 7 data pooled from 2 independent
experiments, n = 11-12 per group; day 14 data from 1 experiment. n = 6-7
per group. (B-E) Semiquantitative histopathology of liver (B), lung (C), SI
(D), and colon (E) from B6.WT and B6.MR1-/~ recipients at days 13-14 after
SCT. Images were captured on a Nikon ECLIPSE Ci microscope fitted with
a DS-Fi2 camera. Original magnification, x4. Data combined from 2 inde-
pendent experiments, n = 9-12 per group; TCD group, n = 6. (F) Perturbed
intestinal barrier integrity as determined by FITC-dextran levels in serum
on day 13 after SCT. All data analyzed using the Mann-Whitney U test
except histology data, which was analyzed using the unpaired t test with
Welch'’s correction.

cy of MAIT cells was noted in the liver (Figure 1B), lung (Figure 1C),
SI, and colon (Figure 1, D and E), approximating 3%-4% of gated
CD3*CD4™eCD8¢ cells, as defined by binding of the active MR1
tetramer. Fractionation of the ST and colon tissue into intraepithelial
and lamina propria compartments revealed that MAIT cells resided
exclusively within the lamina propria (data not shown). Addition-
ally, detection of MR1 tetramer-positive cells in the spleen, lymph
nodes (LNs), and bone marrow was negligible (data not shown),
highlighting the mucosal-associated nature of mouse MAIT cells.
These data support those recently published using MR1 tetramers
(6,7) and suggest that MAIT cells may have a role to play in GVHD
due to their localization in GVHD target organs and juxtaposition to
potential environmental stimuli.

Recipient MAIT cells abrogate GVHD induced by allogeneic stem
cell transplantation. Prior study of the function of MAIT cells has
shown both proinflammatory and regulatory functions, depend-
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ing on the disease model used (24-28). We investigated the func-
tion of MAIT cells in a major MHC-mismatched allogeneic trans-
plant setting. C57BL/6 WT (B6.WT) or MR1-deficient mice on
a B6 background (B6.MR17") were lethally irradiated and trans-
planted with granulocyte colony stimulating factor-mobilized
(G-CSF-mobilized) BALB/c spleen grafts (stem cell transplant
[SCT]). G-CSF-mobilized T cell-depleted (TCD) BALB/c spleno-
cytes were alsoincluded as anon-GVHD control, and survival and
clinical scores were assessed. B6.WT and B6.MR17 recipients
showed a median survival time of 56 days and 19 days, respec-
tively, corresponding to a significant reduction in survival (Figure
2A). Clinical scores of B6.MR1/ recipients were also significantly
higher from day 14 to day 28 after transplant (Figure 2B). GVHD
lethality was also increased in B6.MR17" relative to B6.WT recipi-
ents that received grafts from LP/] donors that were mismatched
for minor histocompatibility antigens only (day 70 survival, 33%
versus 100%; P = 0.02). These data indicate that recipient MAIT
cells function in a regulatory manner in the setting of GVHD.
To determine whether donor-derived MAIT cells contributed to
regulation of GVHD, B6D2F1 mice were lethally irradiated and
transplanted with either B6.WT or B6.MR17/~ BM and T cells in
a major MHC-mismatched model. Notably, naive B6.MR17" ani-
mals exhibited no perturbation of the conventional T cell com-
partment with respect to abundance and subsets (Supplemental
Figure 1, A and B; supplemental material available online with
this article; https://doi.org/10.1172/JCI191646DS1), suggesting
that any effect on survival was due to the absence of MAIT cells
alone. Survival and clinical scores were similar between B6.WT
and B6.MR17" donor grafts (Figure 2, C and D). We also per-
formed transplants in a second system using G-CSF-mobilized
donor grafts from B6.WT and B6.MR17/~ mice into B6D2F1 recip-
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ients. This also showed no difference in survival between the 2
groups (Figure 2, E and F), demonstrating that in these preclinical
settings, it is recipient MAIT cells that abrogate GVHD.

Regulatory function of MAIT cells is confined to the GI tract.
We established that recipient-derived MAIT cells appear to play
a regulatory role during GVHD. To garner further understanding
of the regulatory nature of MAIT cells in vivo, we analyzed serum
cytokine levels in B6.WT and B6.MR1-deficient recipient mice
after allogeneic SCT over a time course, with the aim of identify-
ing when recipient MAIT cell activity might peak. Levels of serum
IL-1B, IL-4, IL-5, IL-6, TNF, IFN-y, and GM-CSF were similar
between B6.WT and B6.MR17" recipients at day 4 after SCT (Fig-
ure 3A). A significant increase in IL-6 and TNF was observed at
day 7 after SCT in B6.MR17/~ mice compared with B6.WT, but was
not apparent at day 14 (Figure 3A), indicating the regulation pro-
vided by MAIT cells may be occurring in the early phase of GVHD.
These data also suggested that the effect may be organ specific,
as the serum cytokine levels in B6.MR17~ animals were unlikely to
account for the significant reduction in survival observed.

We thus undertook semiquantitative histopathology of the
liver, lung, SI, and colon of B6.WT and B6.MR1" recipients after
transplant. These analyses failed to identify any differences in the
lung, liver, and SI (Figure 3, B-D). In contrast, pathology was sig-
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Figure 5. Recipient MAIT cells attenuate proinflammatory donor CD4* T cell expan-
sion in the colon. (A) B6.WT and B6.MR17/- mice were lethally irradiated, transplanted
with BALB/cWT BM (10 x 10°) and BALB/c.luciferase* T cells (3 x 10°) and organs
imaged at days 7 and 14 after transplant. Representative BLI images of the spleen,
) liver, lung, and Gl tract (including mLNs) are shown. (B) Quantitated BLI at days 7
(top) and 14 (bottom) is shown. Data are pooled from 2 independent experiments for
each time point. Day 7, n = 5-7 per group; day 14, n = 11 per group. (C) Frequency of
proliferating donor CD4* T cells in the colon lamina propria at day 14, as determined
by intracellular Ki-67 expression. (D) Frequency of apoptotic donor CD4* T cells in
the colon lamina propria at day 14, as determined by intracellular active caspase-3
expression. Data combined from 2 replicate experiments are shown.n =5 -9 per
group. Data analyzed using the Mann-Whitney U test.

nificantly increased in the colon of B6.MR17" recipients (Figure
3E) and displayed perturbed barrier integrity (Figure 3F), sug-
gesting GI tract-associated MAIT cells abrogated the pathology
occurring in these tissues, thus improving survival. In order to
regulate disease during GVHD, recipient MAIT cells must sur-
vive conditioning and the incoming alloreactive donor graft in
the early transplant period. To establish whether this was indeed
the case, we performed transplants in B6.WT mice and used the
MRI tetramer to identify recipient MAIT cells by flow cytometry.
Recipient MAIT cells were identified in the SI and colon on day
3 and day 7 after transplant (Figure 4, A and B). Although their
abundance was reduced compared with levels seen in naive
mice, the relative reduction in recipient MAIT cells after BMT
was equivalent to that of recipient y3 T cells (Figure 4, A and B),
another innate T cell population. Thus, recipient MAIT cells sur-
vive early after transplant with kinetics similar to those of other
innate-like T cell populations.

Tregs play a key role in maintaining intestinal homeostasis
(29), and their induction by particular microbiota (30, 31) and
microbial-derived metabolites has been described (32, 33). We
thus examined Tregs in the colon lamina propria in WT and
MR17/" mice at day 14 after SCT. This revealed no difference in
Treg frequency or number between the 2 groups (Supplemental
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Figure 2), demonstrating that MAIT cells do not have a direct
impact on Tregs and do not appear to regulate the severity of
GVHD via this regulatory lineage.

To determine the effect recipient-derived MAIT cells have on
donor T cell expansion after transplant, we conducted transplants
using luciferase-expressing donor T cells injected together with
(luciferase negative) BM into either B6.WT or B6.MR1-deficient
recipients. This enabled us to quantify the level of donor T cell
expansion in the presence or absence of MAIT cells in various
organs at any given time point. Whole-body imaging at day 7 and
day 14 after transplant did not show any difference in the biolu-
minescent imaging (BLI) signal of B6.WT and B6.MR17/~ mice
(data not shown). We thus conducted organ imaging at the same
time points to look for organ-specific effects. The BLI signal orig-
inating from spleen, liver, lung, mesenteric LN (mLN), SI, cecum,
and colon at day 7 was equivalent between B6.WT and B6.MR17/
mice (Figure 5, A and B). In contrast, we observed a significant

jci.org

increase in the BLI signal of the cecum and colon in B6.MR17/-
mice compared with WT at day 14 after transplant (Figure 5, A
and B). To determine whether the increased BLI in the colon was
due to donor T cell migration and expansion and/or survival, we
assessed donor T cell proliferation (Ki-67 expression) and apop-
tosis (active caspase-3 expression) in the colon lamina propria at
day 14 after transplant. This revealed an increase in the frequency
of proliferating CD4* T cells in MR1-deficient mice compared
with WT without a clear reduction in apoptosis (Figure 5, C and
D). Differences in CD8" T cell proliferation and apoptosis were
not evident (Supplemental Figure 3, C and D). These data suggest
that recipient MAIT cells constrain the alloreactive-driven expan-
sion of donor T cells specifically in the colon. In support of this,
we observed only minor differences in the frequencies or absolute
numbers of CD4" and no changes in CD8" T cells in the spleen
and mLNs of B6.WT and B6.MR17/" mice at day 7 or day 13 after
transplant (Supplemental Figure 3, A and B).
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To extend these findings, with the aim of establishing which
proinflammatory population or populations may be suppressed by
MAIT cells, we analyzed the cytokine production of donor T cells
by intracellular cytokine staining. Small but significant increases in
polyfunctional (IFN-y*IL-17") donor CD4* T cells were seen in mLNs
of B6.MR17 mice 7 days after transplant (Supplemental Figure 4, A
and B). Subsequently, increased numbers of polyfunctional donor
CD4" T cells were observed in the lamina propria of colons from

jci.org

B6.MR17" recipients (Figure 6, A and B), but not SI (Supplemental
Figure 5, A-D). This included increased frequencies and numbers
of IFN-y*, IL-17*IFN-y*-, and TNF-a*~producing colonic donor
CD4* T cells. Concomitantly there was a small decrease in IL-10-
producing donor CD4" T cells in the colon of MR17" mice (Figure
6A). This phenomenon was predominantly restricted to the CD4
lineage, as cytokine production by colonic CD8* donor T cells was
similar between B6.WT and B6.MR1”/" mice (Supplemental Figure
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6, A and B). These data demonstrate that colon-associated MAIT
cells suppress the expansion of polyfunctional, proinflammatory
donor Thl and Th17 cells in the colon during GVHD.

We next analyzed the cytokine profile of sorted CD3*CD4"#
CD8e, CD3*CD4*, and CD3*CD8" T cells from WT and MAIT
Tg mice, which contain only Va19*VB6* MR1 tetramer-reactive T
cells. MAIT cells produced significantly higher levels of IL-17A,
IL-17F, IFN-vy, and TNF-a, with the majority of cytokine production
attributed to CD3*CD4"eCD8"¢ MAIT cells (Figure 6C). These
findings are consistent with recent reports using a similar MAIT
Tg mouse (9, 14, 19, 25, 34) or polyclonal murine (7, 21) or human
MAIT cells (20) and highlight the significant IL-17 response gen-
erated by these cells.

Giventhat our data showed that the regulatory function of MAIT
cells was restricted to the colon (Figure 3), we investigated why this
may be the case by examining the activation status and IL-17 expres-
sion of MAIT cells from various target tissues in naive animals and

early after SCT (day +1) using IL-17eYFP fate reporter mice. Strik-
ingly, MAIT cells in the GI tract displayed an activated phenotype
with constitutive expression of CD69 at steady state (Figure 7, A and
B). Analysis of IL-17 fate reporter expression (eYFP) further demon-
strated that recipient MAIT cells in the colon expressed high levels
of IL-17, even at steady state (Figure 7, A and C). This high number of
activated MAIT cells expressing IL-17 in the colon is consistent with
the preferential effects of this lineage specifically in the colon. Thus,
MAIT cells in the colon, unlike those in any other organ examined,
are both activated and high IL-17 producers at all times, represent-
ing a population poised to respond rapidly to bacterial metabolite
antigens and regulate acute GVHD.

MAIT cells appear to regulate microbiome diversity in the GI tract.
Previous studies have demonstrated that the microbiota and their
microbial metabolites can profoundly influence intestinal inflam-
mation during GVHD (35, 36), and in a nontransplant setting, IL-17
has been shown to regulate this interplay (37). The data thus far
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have established that recipient MAIT cells reside in mucosal tis-
sue and regulate GVHD in the colon. Given that the colon is a rich
source of microbes and MAIT cells respond to microbial metab-
olites, we hypothesized that this cell population may respond to,
and have an impact on, the gut microbiome. We thus cohoused
B6.WT with B6.MR17~ mice to equilibrate the intestinal microbi-
ota prior to transplantation and confirmed that (a) MAIT cells do
indeed influence the composition of the microbiota and that (b)
this composition converges with WT after cohousing for a month
(Figure 8, A and B, and Supplemental Tables 1 and 2). In contrast,
separately housed mice of each strain analyzed in parallel retained
their initial GI tract microbiota, confirming the community shift
was a consequence of cohousing. We next transplanted cohoused
mice and separately housed mice to establish whether the altered
microbiota of the cohoused mice affected GVHD. B6.WT mice
cohoused with B6.MR17~ mice showed survival kinetics equiva-
lent to those of separately housed B6.WT mice (Figure 8C) and
displayed a fecal microbial community similar to that of B6.MR17
mice after transplant (Figure 8D), suggesting that any dysbiotic
microbial populations present in B6.MR17~ mice do not directly
influence GVHD outcome.

Given that recipient MAIT cells produce very high levels
of IL-17A and that IL-17A is known to be capable of regulating
inflammatory colitis (38), we analyzed the importance of recipi-
ent-derived IL-17 in GVHD. Indeed, B6.IL-17A7~ mice exhibited
hyperacute GVHD, with a mean survival time of 7.5 days versus 34
days for B6E.WT mice (Figure 9A). We confirmed that MAIT cells
were indeed present in tissues from naive IL-17A”" mice (lung, SI,
and colon) and in fact were in greater abundance in the colon com-
pared with WT (Supplemental Figure 7, A and B), likely a response
to the known dysbiosis in these animals (39).Furthermore, we
showed that upon ex vivo expansion (Supplemental Figure 8) and
activation, MAIT cells from both WT and IL-17A” mice expressed
IFN-y and TNF, but not IL-10. As expected, only WT MAIT cells
expressed IL-17A, demonstrating that MAIT cells from IL-17A7
mice were functionally active (Supplemental Figure 7, C and D).
Comparison of the microbiota of B6.IL-17A7~ and B6.MR17" mice
revealed that IL-17A depletion was associated with an addition-
al disparate microbial composition (Figure 9B). Despite this, we
were able to identify a small number of operational taxonomic
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units (OTU) displaying analogous abundance shifts in both dele-
tion strains in comparison with B6.WT mice, thereby potentially
representing populations controlled by similar, IL-17A-dependent
mechanisms (Figure 9C and Supplemental Table 3). These data
indicate that, in the absence of host-derived MAIT cells, a dysbi-
otic microbial community is established, some of which is IL-17A
dependent, but this does not contribute directly to GVHD. The
increased mortality of B6.MR17- mice may instead be associated
with the loss of an important recipient IL-17-producing cell, since
this cytokine is clearly protective during the early phase of GVHD.

MAIT cells regulate barrier integrity and restrain alloantigen
presentation and effector T cell expansion. As increased mortality
was observed in both MR1-deficient and IL-17A-deficient mice
after SCT and we showed that MAIT-derived IL-17A expression
differed between regions of the GI tract during steady state, we
sought to determine the possible mechanisms of MAIT/IL-17-
mediated regulatory effects unique to the colon. We undertook
RNA-sequencing (RNA-seq) analysis of colon and ileum tissue
from naive WT, MR17, and IL-17A”" mice. Analysis of the differ-
entially expressed genes in the colon revealed upregulation of 142
genes in MR17" versus WT, with 67 common genes overlapping
with upregulated genes seen in IL-17A7 versus WT (Figure 10A)
and 216 downregulated genes in MR17" versus WT, with 103 com-
mon genes overlapping with downregulated genes observed in
IL-17A7- versus WT (Figure 10A). We next filtered out the differ-
entially expressed genes common with ileum and examined the
top 50 differentially expressed genes unique to colon. The heat-
map shows clusters of differentially expressed genes common
to both MR17 and IL-17A7" tissues compared with WT (Figure
10B), with selected genes of known function shown in Table 1.
Strikingly, claudin 4 (Cldn4) and claudin 8 (Cldn8) gene expres-
sion was downregulated in both MR17~ and IL-17A”" mice com-
pared with WT (Figure 10, B and C, and Table 1), suggesting MAIT
cells may maintain barrier integrity in the colon by modulating
tight-junction proteins via IL-17A, consistent with data shown
in Figure 3F. Interestingly, gene expression of Semaphorin 6d
and 4b (Sema6d and 4b), important regulators of T cell immune
responses (40, 41), was downregulated in MR17/ and IL-17A7
mice compared with WT (Figure 10B and Table 1), as was the
expression of nuclear factor, interleukin 3 regulated (Nfil3) (Fig-

Table 1. Selected genes downregulated in both MR1/- and IL-17A~/- mice compared with WT

WT versus MR1/- WT versus IL-17A7/-
Gene Symbol (log) Fold change Pvalue (log) Fold change Pvalue Function
Downregulated
Claudin 4 (ldn4 1.01 2.01x10°% 0.666 0.007 Barrier integrity
Claudin 8 Cldn8 0.816 0.019 1.829 341171108 Barrier integrity
Semaphorin bd Semabd 0432 0.01 0438 0.005 Regulator of T cell immune responses
Semaphorin 4b Sema4b 0.568 5.48485 x 10°% 049 0.0002 Regulator of T cell immune responses
Cathepsin L Ctsl 0.305 0.046 0.363 0.004 Protease; Th17 differentiation
Nuclear factor, interleukin 3 Nfil3 1.599 0.0002 2.875 3.09406 x 10 Bacterial immune defense
regulated
UDP glucuronosyltransferase Ugt1a8 4,705 0.008 13.08 13403 x10 x 107  Metabolism (glucuronidation pathway)

1family, polypeptide A8
Data analyzed using edgeR with FDR < 0.05.
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Figure 10. Regulation of host defense and metabolism genes by MAIT and
IL-17A. RNA-seq analysis was performed on tissue from proximal colon and
distal ileum of naive WT, MR1/~, and IL-17A~/~ mice (n = 4 per group). (A)
Comparison of the number of overlapping genes differentially expressed
within the colon; upregulated (upper) and downregulated (lower) genes. (B)
Heatmap depicting differentially expressed genes comparing MR1”- and
IL17A~ versus WT colon, but not ileum. log, transformed, normalized read
counts were used. (C) Normalized read count data for claudin 4 and claudin
8 expression are shown. Data analyzed using edgeR with a false discovery
rate (FDR) < 0.05.

ure 10B and Table 1), a transcription factor important in host
immune defence against pathogens (42), and UDP glucurono-
syltransferase 1 family, polypeptide A8 (Ugtla8) (Figure 10B
and Table 1), an enzyme important in the glucuronidation path-
way of metabolism (43).

The accelerated mortality in MR17 recipients in the third week
after transplant with preferential GVHD in the colon suggested an
enhancement in indirect antigen presentation by donor colon-de-
rived DCs within the mLN, as we recently described (3). We thus
undertook experiments to investigate the ability of recipient MAIT
cells to regulate donor DC expansion and alloantigen presentation
in the GI tract. In order to achieve this, we used TCR Tg Marilyn
mice in which CD4" T cells recognize the male H-Y antigen in an
I-AP-restricted fashion. We transplanted grafts comprising BM
from B6.CD11c-GCDL mice (where the luciferase signal is used to
track donor CD11c* DC) and B6.Marilyn TCR Tg T cells (to induce
GVHD) into lethally irradiated male B6.WT and B6.MR1" recip-
ients (Figure 11A). Analysis of bacterial distribution by fluores-
cence in situ hybridization 14 days after SCT revealed increased
bacterial translocation in the GI tract of MRI”" recipients (Figure
11B), an effect also seen in IL-17R"" recipients (39). Consistent
with increased DAMP signaling in these animals, a significant
expansion of donor DC (bioluminescence intensity) in the mLN
in MR1-deficient mice was also observed (Figure 11C), confirm-
ing that recipient MAIT cells can indeed regulate GI tract integrity
and donor DC expansion and/or migration in the GI tract.

To ascertain whether this donor DC expansion in MRI1-
deficient mice would lead to an increase in T cell priming and
effector T cell expansion, we transplanted B6.WT BM with
B6.Marilyn TCR Tg T cells into lethally irradiated male B6.WT
and B6.MR17" recipients. On day 12 after SCT, we transferred
Marilyn Tg luc* T cells (here the luciferase signal reports for donor
alloantigen presentation and subsequent antigen-specific T cell
expansion; Figure 11D). Alloantigen-specific (Marilyn Tg luc*) T
cells were preferentially expanded in the GI tract of MR1-deficient
mice (Figure 11, E and F), with an increased frequency of patho-
genic IFN-y*IL-17*-secreting effector T cells (Figure 11, G and H).
Collectively, these data demonstrate that recipient MAIT cells
have the ability to suppress alloantigen presentation by donor DC
and subsequent effector T cell expansion following transplanta-
tion, culminating in the attenuation of GVHD.

Discussion

The importance of mucosal immunity and responses to microbi-
ota at environmental interfaces in disease is only now beginning
to be appreciated. MAIT cells, whose primary role at steady state
appears to be antimicrobial, are likely to be important in modulat-
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ing inflammatory diseases that target mucosal surfaces (16, 44).
Previous work has demonstrated both inflammatory and regula-
tory functions for MAIT cells in various mouse models and human
disease (8, 9); however, the function of MAIT cells in the context
of GVHD has not been studied. Using MAIT-deficient mice and
MR1 tetramers to specifically identify endogenous MAIT cells
in nongenetically modified mice, we have shown that recipient-
derived MAIT cells persist in the colon following total body irra-
diation. Here, lamina propria MAIT cells appear to control GVHD
by regulating barrier function and attenuate proinflammatory
cytokine production by donor CD4* T cells. This is associated
with shifts in the intestinal microbiota.

MAIT cell activation requires presentation of riboflavin-based
precursors captured by the MHC class I-related molecule MR1
(11-15). The breakdown of epithelial barrier integrity after BMT, a
result of chemoradiotherapy during conditioning and GVHD itself
(4), is likely to increase access of T cells and APCs to bacteria (2)
that utilize the riboflavin biosynthesis pathway. Subsequent cap-
ture, processing, and presentation of metabolite antigen on MR1
to recipient MAIT cells will lead to cellular activation and effec-
tor function. In addition, MAIT cells can also be activated in an
antigen-independent manner by IL-12 and IL-18 (45-47). The end
result of MAIT cell activation is to limit microbial colonization and
disease by potential pathogens. In the context of GVHD, it appears
that while multiple immune pathways are in effect, MAIT cells
play a notable and nonredundant role. The present study demon-
strates a link between MAIT cells and the composition of the
gut microbiome in the mouse at steady state. In particular, shifts
in the abundance of several OTUs from the bacterial family
S24-7, recently defined as “Candidatus Homeothermaceae” (48),
are notable in mice lacking MAIT cells. However, while the micro-
biome profile of B6.MR17" mice can be transferred to B6.WT
mice through cohousing, these communities do not appear to
influence GVHD. This suggests that the transferrable microbiota,
putatively regulated by MAIT cells, likely those with an active
riboflavin biosynthesis pathway, are not directly pathogenic in the
context of GVHD if MAIT cells are present.

The mucosal location of MAIT cells enables rapid sensing of
any breakdown in mucosal surface integrity and subsequent bac-
terial and/or PAMP molecule translocation, a prominent feature
of GVHD. The mechanism by which MAIT cells are able to sup-
press inflammation may be directly through cytokines, as we and
others have demonstrated their ability to generate large amounts
of cytokines, particularly IL-17A (6, 7, 14). The majority of adult
MAIT cells exhibit a mature and differentiated phenotype (7), sug-
gesting they are primed for rapid cytokine production following
stimulation. Notable expression of IL-17 is related to the expres-
sion of high levels of RORyt and low levels of T-bet (6, 7). MAIT
cell-derived cytokines, particularly IL-17, induce recruitment of
myeloid cells, such as monocytes/macrophages and neutrophils
that mediate pathogen clearance, as demonstrated in other dis-
ease models (49-51).

The GI tract contains numerous sources of IL-17 of both
hematopoietic and nonhematopoietic origin. Nonhematopoietic
sources of IL-17 in the GI tract include Paneth cells, which have
been shown to play a role in inflammation (52), while T cell sources
include af, y3, NKT, innate lymphoid, and MAIT cells (5). IL-17
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has direct effects on maintaining epithelial barrier integrity. In
conjunction with IL-22, IL-17A and IL-17F enhance production of
antimicrobial peptides (53). Furthermore, following colitis damage
induced by dextran sulfate sodium (DSS), epithelial cells exposed
to IL-17 and the growth factor FGF2 undergo proliferation to restore
barrier function and prevent inflammatory bacterial accumulation
(54). IL-17 derived from 8 T cells has also been shown to increase
expression of occludin, a tight junction protein critical for main-
taining homeostasis of epithelial cell permeability (55). As such,
lack of IL-17 leads to increased susceptibility to infection by both
bacteria and fungi (56-60). Therefore, IL-17 is required to maintain
epithelial cell barrier function, and perturbation of IL-17 in this con-
text can lead to enhanced inflammation and GI damage. It is thus
likely that the protection from GVHD in the GI tract by MAIT cells
reflects their role in maintaining mucosal integrity and that the
enhanced donor T cell responses seen in the colon in their absence
reflect enhanced PAMP signaling locally within the GI tract. This
pathway has recently been shown to be critical in determining the
severity of GVHD after BMT (2, 3). Given that MAIT cells are but
one source of IL-17A in the GI tract, it is thus not surprising that their
absence results in a phenotype intermediate between IL-17A7- and
WT recipients. Thus, the exacerbation of GVHD in the absence of
IL-17A clearly involves multiple additional pathways over and above
those mediated by MAIT cells. The pathways of regulation utilized
by MAIT cells and IL-17A can only be definitively dissected by the
use of cre-based systems that are not yet available, but will enable
the specific removal of cytokines from MAIT cells. That said, given
the known ability of IL-17A from conventional donor T cells to
promote acute GVHD, including within the GI tract (39, 61, 62),
we do not envisage that the administration of this cytokine to
patients would be safe.

It is important to note that MAIT cells are a rare (<1%) popu-
lation in relatively clean inbred mice (7) in contrast with humans,
where they represent up to 5% of peripheral blood T cells and 45%
of hepatic T cells (20). Thus, the clear propensity to acute GVHD
in the GItract in mice lacking MAIT cells is likely to underestimate
their importance in patients undergoing BMT. In fact, recipient
MAIT cells have recently been shown to be resistant to myeloab-
lative chemotherapy prior to autologous SCT. Importantly, pre-
transplant MAIT cell numbers were predictive for reductions in
subsequent infection and inflammatory responses (63), consistent
with the findings here after allogeneic SCT. The importance of
GI tract integrity and microbiome-derived metabolites in modu-
lating GVHD have been demonstrated as a very early event after
BMT (36, 64). Since the numbers of donor MAIT cells in the bone
marrow and splenic T cell-derived grafts in these experiments
are very limited, MAIT cell reconstitution primarily reflects bone
marrow-derived MAIT cells, which are selected in the thymus of
MRI1-bearing double-negative thymocytes (65). This reconstitu-
tion is thus slow (beyond 3 to 4 weeks) and develops after GVHD
in the GI tract has already occurred. For these reasons, the effect
of donor MAIT cells is minimal in these preclinical systems, but
we acknowledge this may not necessarily be true in clinical trans-
plantation, where the number of MAIT cells in blood is much high-
er. Indeed, a recent study has now demonstrated an association
between donor MAIT cell numbers and gut microbiota after trans-
plantation (66). Now that reagents are available to study what is a
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very large subset of CD8* T cells in humans, it will be important
to ascertain whether numerical and/or functional defects in this
population correlate with alterations in the intestinal microbiome
and GVHD outcomes in patients.

Methods

Mice. Female C57BL/6] (B6.WT, H-2%), B6D2F1 (H-2"4), and BALB/c
(H-29) mice were purchased from the Animal Resources Centre (Perth,
Australia). MR17~ mice on a C57BL/6 background (67) and iVa19/VB6
double-Tg mice on a Ca/" C57BL/6 background (68) (B6.MAIT Tg)
were provided by O. Lantz. B6.Marilyn TCR Tg mice (on a Rag2”/- back-
ground) (69) were provided by P. Matzinger (NIH, Bethesda, Maryland,
USA). To generate Marilyn TCR Tg luciferase* mice, B6.Marilyn TCR
Tg mice were crossed with the B6.p-actin-luciferase (CD90.1+) line
(70) (provided by R Negrin, Stanford University, Stanford, California,
USA) to generate Marilyn TCR Tg and luciferase* CD90.1 homozygous
mice on a B6.Rag2”" background. B6.CD11c-GCDL mice (71) (provided
by G. Hammerling, German Cancer Research Centre, Heidelberg, Ger-
many), B6.IL-17Cre x B6.ROSA26eYFP mice (IL-17eYFP) (72) (provided
by B. Stockinger, Francis Crick Institute, London, United Kingdom; and
F. Costantini, Columbia University, New York, New York, USA), BALB/c
luciferase* mice (73) (provided by R. Negrin), LP/] mice (Jackson Lab-
oratories, catalog 000676), and BALB/c CD45.1* mice (sourced from
the Peter MacCallum Cancer Centre, Melbourne, Australia) were bred
in house. We used age-matched mice in all experiments. Mice were
housed in microisolator cages and received acidified autoclaved water
(pH 2.5) after BMT.

Stem cell and BMT. Total body irradiation (1000 cGy, B6 background;
1100 cGy, B6D2F1) was administered on day -1 (137Cs source at 82 cGy/
min), splitinto 2 doses separated by 3 hours. Lethally irradiated mice were
injected intravenously on day O with either 10 or 25 x 10¢ whole or TCD
splenocytes from donor mice pretreated for 6 days with G-CSF (10 pg/d).
T cell depletion was performed by incubating splenocytes with hybrid-
oma supernatants containing anti-CD4 (RL172), anti-CD8 (TIB211),
and Thy1.2 (HO-13-4), followed by incubation with rabbit complement
(Cedarlane). Alternatively, lethally irradiated mice were injected intra-
venously on day O with 5 to 10 x 10° BM cells and 2 to 5 x 10° enriched
splenic T cells (80%-90% CD3*). TCD grafts containing only 10 x 10°
TCD BM were transplanted as non-GVHD controls.

Assessment of GVHD. The degree of systemic GVHD was assessed
using a cumulative scoring system that measures changes in 5 clini-
cal parameters: weight loss, posture (hunching), activity, fur texture,
and skin integrity (maximum index, 10). Mice were monitored daily,
and those with GVHD clinical scores of 6 or more (74) were sacrificed
and the date of death deemed as the next day in accordance with insti-
tutional animal ethics guidelines. Organ pathology was determined
by blinded assessment of formalin-fixed, paraffin-embedded, H&E-
stained sections as described previously (39).

Flow cytometry. CD4 (clone RM4-5), VB6 (clone RR4-7), Ki-67
(clone B.56), active caspase-3 (clone C92-605), and CD25 (clone
7D4) were all purchased from BD Biosciences. CD90.1 (Thyl.1,
clone HIS51) was purchased from eBiosciences. CD3 (clone 145-
2C11), CD8 (clone 53-6.7), CD45.1 (clone A20), CD45.2 (clone 104),
TCRy3 (clone GL3), CD326 (clone G8.8), CD19 (clone 6D5), CD90.2
(Thy1.2, clone 53-2.1), CD69 (clone H1.2F3), H2D¢ (clone 34-2-12),
FOXP3 (clone 150D), IL-10 (clone JES5-16E3), IL-17A (clone TC11-
8H10.1), IFN-y (clone XM1.2), and TNF (clone MP6-XT22) were all
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Figure 11. Recipient MAIT cells suppress alloantigen-specific Marilyn TCR Tg effector T cell expansion. (A-C) Lethally irradiated male B6.WT and B6.MR1"/~
recipients were transplanted with TCD B6.CD11c-GCDL BM and B6.Marilyn TCR Tg T cells. Bacterial translocation in ileumn tissue by FISH at day 14 after
allogeneic SCT is shown in B. Individual organs were imaged on day 14 after allogeneic SCT, and BLI data combined from 3 replicate experiments are shown
in C (n =12-15 per group). (D-H) Lethally irradiated male B6.WT and B6.MR1"/~ recipients were transplanted with B6.WT BM and B6.Marilyn TCR Tg T cells,
followed by transfer of Marilyn luc* T cell on day 12 after allogeneic SCT. Individual organs were imaged 7 days after transfer, and BLI data combined from 3
replicate experiments are shown in E (n = 9-13 per group). Representative images are shown in F. Frequency of pathogenic IFN-y*IL-17* Marilyn luc* T cells in
mLN was determined, and data combined from 2 replicate experiments are shown in G (n = 5-10 per group). Representative FACS plots are shown in H. Data

analyzed using the Mann-Whitney U test.

purchased from BioLegend. Fixation and permeabilization were
undertaken for intracellular staining (BD Fix/Perm Kit; BD Biosci-
ences) and nuclear staining (Fix/Perm Kit; eBiosciences) according
to the manufacturer’s instructions. The LIVE/DEAD Fixable Aqua
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Dead Cell Staining Kit (Invitrogen) was utilized to gate viable cells.
Cells were acquired on a BD LSRFortessa and analyzed with Flow]Jo
V9 (Treestar). MR1 tetramers were prepared and used as previously

described (7, 8, 11, 75).
s


https://www.jci.org
https://www.jci.org

B

RESEARCH ARTICLE

Cytokine bead array. Serum and culture supernatant cytokine
levels were measured using mouse Flex Array sets (BD Biosciences)
according to the manufacturer’s instructions.

Barrier integrity assay. Gut permeability was determined by
FITC-dextran assay, as described previously (39). Bacterial translo-
cation in tissues by FISH was performed as described previously (39).

Xenogen imaging. Donor T cell and DC expansion in vivo was mea-
sured by luciferase signal intensity using the IVIS Spectrum Imaging
System (Caliper Life Sciences). Mice were injected with luciferin (0.5
mg) subcutaneously and imaged after 5 minutes. Individual organs
were harvested and imaged after reinjection with luciferin. Data were
analyzed using Living Image software (PerkinElmer). Light emis-
sion is presented as photons per second per cm? per steer radiant
(ph/cm?/s/st).

Lymphocyte isolation from tissues. Lymphocytes were isolated from
colon and SI using the gentleMACS Dissociator and Mouse Lamina
Propria Dissociation Kit (both Miltenyi Biotech) according to the man-
ufacturer’s instructions. Lymphocytes were isolated from lung tissue
by digestion with collagenase Il as described previously (76) and from
liver tissue by mechanical disruption and Percoll density centrifuga-
tion as described previously (77).

MAIT cell expansion ex vivo. This was performed as described
previously (7). Briefly, spleens and thymus from naive B6.WT and
IL-17A7/~ mice were harvested, mashed, and erythrocytes lysed using
Gey’s solution. Cells were resuspended in IMDM supplemented with
152 nM MR1 ligand (5-OP-RU synthesized in DMSO; ref. 78), 50 ng/
ml recombinant human IL-2 (Proleukin; Prometheus Laboratories,
Bayer HealthCare Pharmaceuticals), 10% FBS, L-glutamine (2 mM),
penicillin (100 units/ml), streptomyein (100 pg/ml), sodium pyruvate
(1 mM), NEAA (Ix), and 2-B-mercaptoethanol (23 uM). After 5 days
culture, cells were collected and stimulated with phorbol myristate
acetate (50 ng/ml) andionomycin (500 ng/ml) in fresh culture medium
for 18 hours (brefeldin A added in the final 4 hours). Activated cells
were then collected and stained for intracellular IFN-y, TNF, IL-17A,
and IL-10 expression as described previously (39).

16S rRNA amplicon sequencing and analysis. DNA was extracted
from 50-100 mg of fecal material using the Maxwell 16 Tissue DNA
Kit (Promega). The 16S rRNA gene encompassing the V6 to V8 regions
was amplified and sequenced on the MiSeq Sequencing System (Illu-
mina) using paired-end sequencing with V3 300 bp chemistry in the
Australian Centre for Ecogenomics according to the manufacturer’s
protocol. OTUs were identified using the QIIME script pick_open_
reference_otus.py (79) with default parameters (97% similarity) and
assigned taxonomy using BLAST (80) against the Greengenes ref-
erence database version 2014/0955 (http://data.ace.uq.edu.au/
public/gg). Differential abundance analysis was performed on raw
read counts using DESeq?2. Full details are provided in the Supplemen-
tal Methods. Sequencing data have been uploaded to the Sequence
Read Archive under BioProject PRINA433452.

RNA-seq and analysis. Total RNA was isolated from proximal colon
and distal ileum tissue using Precellys Lysing and QIAGEN RNeasy
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Plus Mini Kits per the manufacturer’s instructions. RNA libraries
were prepared using the NEBnext Ultra RNA Library Prep Kit for Illu-
mina (New England Biolabs), assessed for size, and quantified using
the 2100 Bioanalyzer (Agilent Technologies) and Qubit Fluorometer
(Thermo Fisher Scientific), respectively. Libraries were sequenced
using high-output single-end 75 cycle sequencing kits (version 2) on
the Illumina NextSeq 550 platform. Full details are provided in Sup-
plemental Methods. Sequencing data have been uploaded into Array-
Express, accession number E-MTAB-6547.

Statistics. Survival curves were plotted using Kaplan-Meier esti-
mates and compared by log-rank analysis. The parametric unpaired ¢
test or the nonparametric Mann-Whitney U or ¢ tests (2-sided) were
used for the statistical analysis of data. P < 0.05 was considered statis-
tically significant. Data are presented as mean * SEM.

Study approval. All animal procedures were carried out with
approval from the QIMR Berghofer Medical Research Institute Ani-
mal Ethics Committee.
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