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Some autoimmune disorders are monogenetic diseases; however, clinical manifestations among individuals vary, despite
the presence of identical mutations in the disease-causing gene. In this issue of the JCI, Massaad and colleagues
characterized a seemingly monogenic autoimmune disorder in a family that was linked to homozygous loss-of-function
mutations in the gene encoding the endonuclease Nei endonuclease VIII-like 3 (NEIL3), which has not been previously
associated with autoimmunity. The identification of an unrelated healthy individual with the same homozygous mutation
spurred more in-depth analysis of the data and revealed the presence of a second mutation in a known autoimmune-
associated gene. Animals lacking Neil3 had no overt phenotype, but were predisposed to autoantibody production and
nephritis following exposure to the TLR3 ligand poly(I:C). Together, these results support further evaluation of the drivers
of autoimmunity in supposedly monogenic disorders.
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Genetics of immune 
dysfunction
It is generally recognized that the first pri-
mary immunodeficiency was described 
in 1952, when Ogden Bruton reported a 
male patient who lacked all serum gam-
maglobulins (antibodies/immunoglobu-
lins) and suffered from recurrent bacterial 
infections (1). Remarkably, regular subcu-
taneous infusion of concentrated human 
immune serum globulins protected the 
patient from sepsis (1), demonstrating 
a link between the absence of gamma-
globulin and severe bacterial infections 
and the possible feasibility of treating 
such individuals with gammaglobulin 
replacement therapy. Forty years later, the 
gene responsible for Bruton’s or X-linked 
agammaglobulinemia was identified as 
BTK (Bruton’s tyrosine kinase) (2, 3). 
Today, with the incredible advances that 
have been made in next-generation and 
high-throughout sequencing technologies 
over the last decade, mutations in more 

than 300 genes have been discovered 
that cause primary immunodeficiencies 
(4). In fact, the clinical manifestations of 
these conditions would be more appro-
priately described as immune dysregu-
lation because these conditions often go 
well beyond susceptibility to infectious 
diseases and include autoinflammation, 
autoimmunity, allergic disease, and even 
malignancy (4, 5).

While these diseases are often con-
sidered to be Mendelian and monogen-
ic in nature, the clinical presentation 
of individuals with diseases that result 
from mutations in the same gene can be 
extremely diverse, ranging from mild dis-
ease to fatal infections or autoimmunity 
(4, 6). This variability is also observed 
in families with the same genetic defect, 
indicating that disease manifestation is 
not simply a genotype/phenotype effect. 
In fact, some mutations remain clinical-
ly silent, as evidenced by asymptomatic 
carriers of ostensibly pathogenic gene 

mutations (7, 8). This incomplete pene-
trance of genetic traits is often attribut-
ed to environmental or epigenetic influ-
ences that modulate the impact of gene 
mutations on disease pathogenesis (6). 
However, another possibility is that the 
condition is actually digenic or multigen-
ic, inasmuch as a mutation in a second 
gene is required for full-blown clinical 
disease. This raises the question as to 
whether a particular disease is monogen-
ic with incomplete penetrance or mul-
tigenic in nature. While GWAS studies 
certainly suggest that many autoimmune 
diseases are polygenic (9), this hypoth-
esis has rarely been tested in the setting 
of conditions such as primary immuno-
deficiencies that are considered to result 
from mutations in a single gene.

In the past, it has been challenging to 
formally test the concept that supposed 
monogenetic disorders may instead be 
polygenetic because, typically, few candi-
date genes would be analyzed. Moreover, 
any mutation found in one of the analyzed 
genes was assumed to be the deleterious 
genetic lesion — a reasonable conclusion. 
However, whole-exome and genome 
sequencing have revealed that mutations 
are common in the human population and 
the vast majority of these genetic changes 
are clinically silent (6). While we tend to 
focus on a short list of single candidate 
genes that are likely to be pathogenic, we 
need to consider the possibility that the 
disease phenotype may result from genet-
ic epistasis. In this issue, Massaad et al. 
provide a compelling example whereby 
immune dysregulation and autoimmuni-
ty due to mutation in a disease-associat-
ed gene is exacerbated by a mutation in a 
completely unrelated gene (10).

An asymptomatic individual 
tells the tale
Massaad et al. describe three siblings from 
a consanguineous Kuwaiti family suffering 
from recurrent bacterial and fungal infec-
tions, defective peripheral B cell tolerance, 
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Some autoimmune disorders are monogenetic diseases; however, clinical 
manifestations among individuals vary, despite the presence of identical 
mutations in the disease-causing gene. In this issue of the JCI, Massaad and 
colleagues characterized a seemingly monogenic autoimmune disorder in 
a family that was linked to homozygous loss-of-function mutations in the 
gene encoding the endonuclease Nei endonuclease VIII-like 3 (NEIL3), which 
has not been previously associated with autoimmunity. The identification 
of an unrelated healthy individual with the same homozygous mutation 
spurred more in-depth analysis of the data and revealed the presence of 
a second mutation in a known autoimmune-associated gene. Animals 
lacking Neil3 had no overt phenotype, but were predisposed to autoantibody 
production and nephritis following exposure to the TLR3 ligand poly(I:C). 
Together, these results support further evaluation of the drivers of 
autoimmunity in supposedly monogenic disorders.
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Concluding remarks
These findings of Massaad et al. are inter-
esting because they illustrate the benign 
(subclinical) nature of specific gene muta-
tions, yet also reveal potential combinato-
rial effects of multiple genetic lesions. This 
result provides a salient lesson about the 
need to consider the possible consequenc-
es of mutations in unanticipated genes 
that are observed in essentially all studies 
employing whole genome sequencing as a 
platform to discover the molecular cause of 
human diseases (6). Studies such as that of 
Massaad et al. will pave the way for the elu-
cidation of additional gene mutations that 
cooperate to result in clinical phenotypes 
— and offer a glimpse of the complexity of 
human genetic diseases that may occasion-
ally be oligogenic, rather than monogenic.
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it needed to be determined whether NEIL3 
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by LRBA deficiency.

Consequently, Massaad et al. studied 
Neil3-deficient mice to evaluate the con-
tribution of this gene to the observed clin-
ical phenotypes. Mice lacking Neil3, not 
unlike the healthy individual with the sin-
gle NEIL3 mutation, were largely normal, 
with intact development and function of all 
immune cell lineages tested and no obvi-
ous autoimmunity. However, again paral-
leling the healthy asymptomatic carrier, 
Neil3-deficient mice exhibited substantial-
ly increased levels of autoreactive IgM and 
IgG antibodies. The more striking finding 
though was that production of autoanti-
bodies, as well as the incidence of autoim-
munity, in Neil3-deficient mice was greatly 
increased following repeated administra-
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and severe autoimmunity. This condition 
was uniformly fatal in the second decade 
of life. Whole-genome sequencing anal-
ysis revealed homozygous mutations in 
Nei endonuclease VIII-like 3 (NEIL3), 
which encodes the endonuclease VIII–like 
enzyme involved in DNA base excision 
repair, in the three affected individuals. 
Both parents and all other healthy siblings 
were heterozygous for this mutation, indi-
cating complete genetic segregation with 
disease. The specific mutation abolished 
the enzymatic activity of NEIL3, thereby 
affecting DNA repair in these individuals 
and establishing the potential pathoge-
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DNA repair have been associated with 
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be inappropriate to conclude that deleteri-
ous mutations in NEIL3 represent a novel 
cause of immune dysregulation.
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(including authors of the current study) to 
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tion and progressive autoimmunity. Thus, 
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by Massaad et al. bore homozygous muta-
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