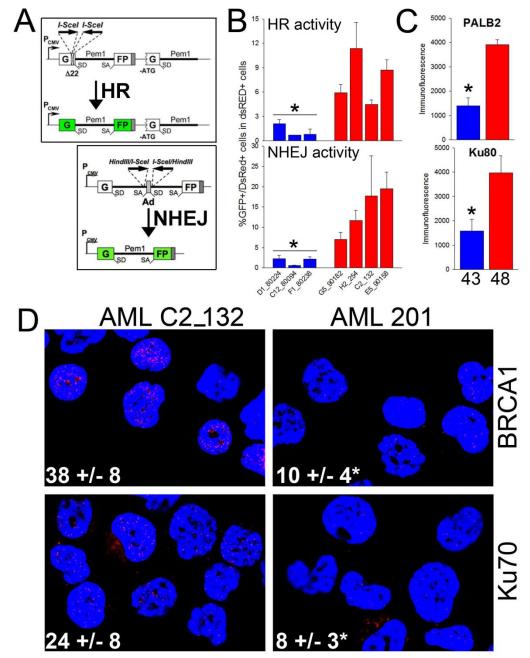
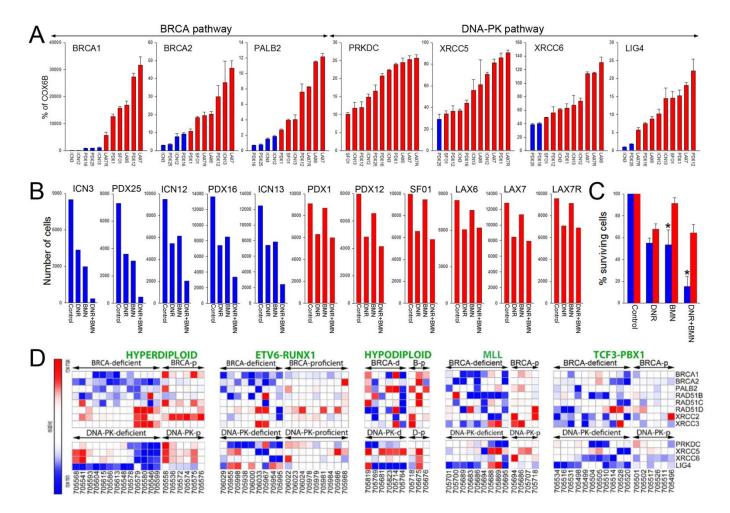
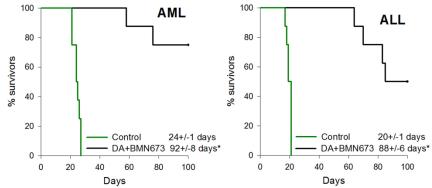
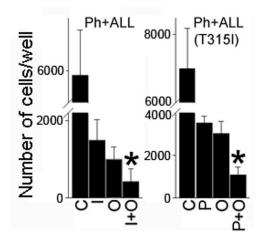
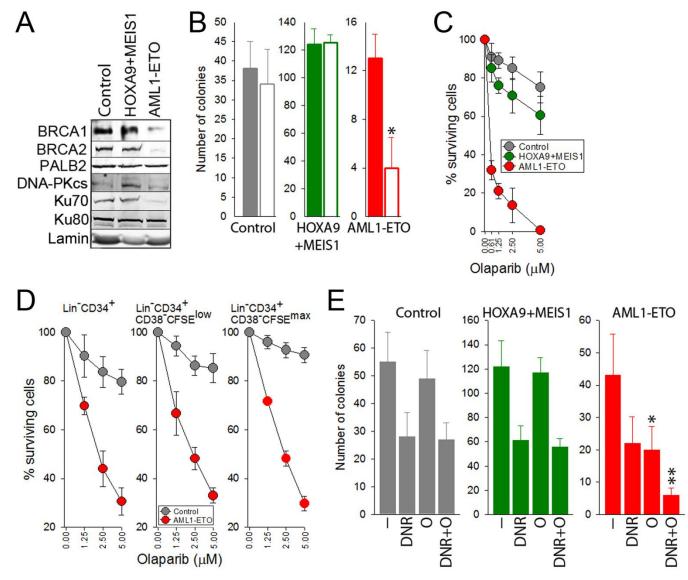

Supplementary Fig. 1. PARP1i elevated DSBs and triggered synthetic lethality in *FANCA-/-* and/or *XRCC6-/-* proliferating cells and in *XRCC6-/-* quiescent cells. (**A**) Sensitivity of the indicated cells to olaparib and BMN673. (**B**, **C**) Parental (grey bars) and *FANCA-/- XRCC6-/-* (green bars) mESCs treated with 12.5 nM BMN673 for 72 hours; (**B**) γ -H2AX –positive Ki67⁻ and Ki67⁺ cells; (**C**) Dead Ki67⁻ and Ki67⁺ cells. Results represent mean \pm SD from 3 experiments; *p<0.05 in comparison to parental counterparts using Student t test.

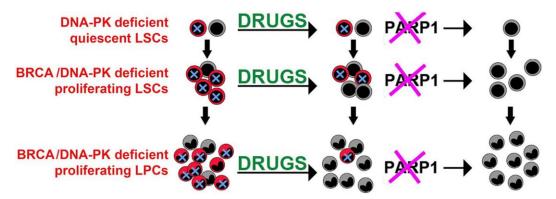

Supplementary Fig. 2. PARP1i downregulated PARylated proteins. (**A**) Parental and *FANCA-/-XRCC6-/-* mESCs, and (**B**) parental and *RAD54-/-LIG4-/-* Nalm-6 cells were treated or not with 0.3 µM olaparib or 3 nM BMN673 for 24 hours. Total cell lysates were analyzed by Western blot for PARylated proteins; actin served as loading control.

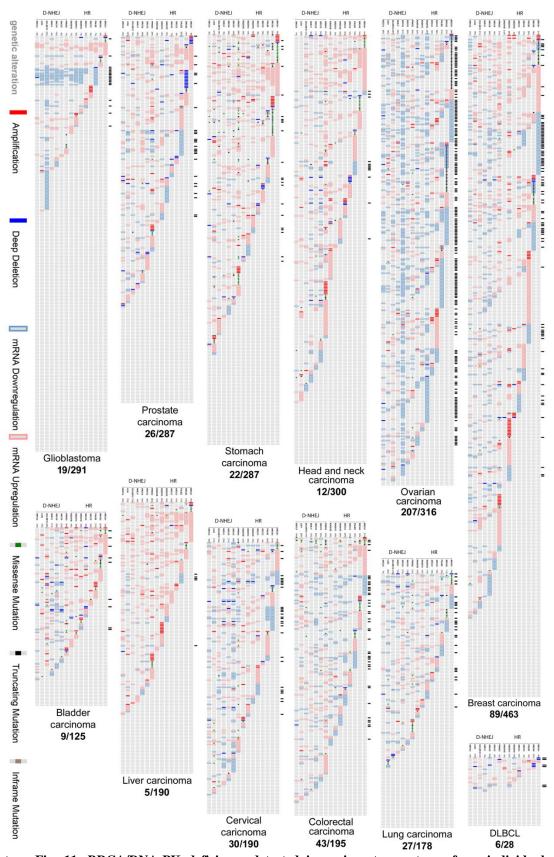

Supplementary Fig. 3. Wide-range expression levels of PRKDC and BRCA1 in ALLs and AMLs generate BRCA/DNA-PK deficient individual leukemias. Microarray analysis of the expression of PRKDC (**A**) and BRCA1 (**B**) in various types of B-ALL (from left to right): hyperdiploid, hypodiploid, other, in T-ALL, and in normal CD10⁺CD19⁺ cells and CD34⁺ cells [Pediatric Cancer Genome Project (St. Jude Children's Research Hospital and Washington University; <u>http://explore.pediatriccancergenomeproject.org</u>]. Each red dot represents expression level of PRKDC and BRCA1 from individual patient. (**C**) Microarray analysis of PRKDC and BRCA1 expression in AMLs characterized by Figueroa and colleagues (*1*). (**D**) Analysis of TCGA database revealed individual AMLs displaying biomarkers of BRCA/DNA-PK deficiency. The indicated genes encoding proteins in HR and D-NHEJ pathways were included in to the analysis. Samples displaying putative BRCA/DNA-PK deficiency (deep deletion and Z-score threshold \leq -1.5) are marked by dots.


Supplementary Fig. 4. Microarray expression pattern analysis of the gens of BRCA and DNA-PK pathways in AML patients predicting BRCA/DNA-PK deficiency/proficiency. We identified 13 BRCA/DNA-PK deficient patients in microarrays from 436 AML patients (NCBI accession # GSE16432) using limited number BRCA and DNA-PK pathway genes with available data [clinical trials AMLSG HD98A and AMLSG HD98B (2)].


Supplementary Fig. 5. Functional assays of HR and NHEJ in BRCA/DNA-PK deficient and proficient cells. (A) HR and NHEJ reporter cassettes and repair products. (B) HR and NHEJ activities in BRCA/DNA-PK deficient (blue) and proficient (red) primary AML samples were detected as describe before with modifications (3-5). Two- to five million AML cells were nucleofected with 5 μ g of I-SceI – linearized HR or NHEJ reporter plasmid and 2.5 μ g of pDsRed plasmid using Nucleofector (Lonza; program U-008, Human CD34 Cell Nucleofector® Kit). HR or NHEJ event restores functional GFP expression. After 72 hours the percentage of GFP+/DsRed+ cells in DsRed+ cells was analyzed by flow cytometry to assess HR and NHEJ activity. Results represent mean \pm SD from triplicates/sample; *p<0.001 in comparison to all BRCA/DNA-PK-positive samples. (C) Flow cytometry analysis of DSB repair proteins in individual ALLs (#43 and #48) predicted to be BRCA/DNA-PK deficient (blue) or proficient (red). Results represent mean \pm SD from 3 measurements/sample. (D) Representative nuclear staining (DAPI) for BRCA1 and Ku70 foci in BRCA/DNA-PK deficient AML 201 and BRCA/DNA-PK proficient AML C2-132 cell samples. Foci were detected as described before (3, 6). Results represent mean \pm SD number of foci/nucleus in 10 cells displaying \geq 5 foci/cell per experimental group. *p \leq 0.001 using Student t test.


Supplementary Fig. 6. RT-qPCR and mRNA microarray expression pattern analyses of the genes of BRCA and DNA-PK pathways in Philadelphia chromosome-negative B-ALLs from individual patients predict BRCA/DNA-PK deficiency/proficiency. (**A**) Primary cells from 11 individual B-ALL samples were tested simultaneously by RT-qPCR for expression levels of genes in BRCA and DNA-PK pathways, which were then normalized against a housekeeping gene such as COX6B. The most dramatic differences between individual samples were observed in expressions of BRCA1, PALB2 and BRCA2 from the BRCA pathway (546, 17, and 15 -fold difference between the highest and lowest levels, respectively), and also of LIG4 from the DNA-PK pathway (20-fold) whereas PRKDC, XRCC5 and XRCC6 demonstrated only 2-3 –fold difference. Samples, in which low expression of BRCA/DNA-PK genes was associated with BMN673 sensitivity or resistance (see panel **B**), are marked in blue and red, respectively. (**B**) Sensitivity to 1 μ g/ml DNR, 25 nM BMN673, or DNR + BMN673 of the primary ALL xenograft cells from BRCA and/or DNA-PK deficient (blue bars) and BRCA and/or DNA-PK proficient (red bars) samples. (**C**) Cumulative percentages of cells from samples examined in panel **B**; p<0.001 in comparison to corresponding BRCA/DNA-PK proficient samples using Student t test. (**D**) Microarray analyses of gene expression patterns in 308 Philadelphia chromosome-negative B-ALL samples [NCBI accession # GSE33315 (7)] predicted BRCA and DNA-PK deficient phenotype in 13 of 116 hyperdiploid, 9 of 99 ETV6-RUNX1, 6 of 23 hypodiploid, 9 of 30 MLL-rearranged, and 11 of 40 TCF3-PBX1 patient samples. B-p and BRCA-p = BRCA proficient; D-p and DNA-PK-p = DNA-PK proficient.


Supplementary Fig. 7. DA+BMN673 eliminated LSCs from BRCA/DNA-PK deficient AML and ALL PLXs in vivo. Sub-lethally irradiated NSG mice were injected intravenously with 2 x 10^6 bone marrow cells harvested from NSG mice carrying BRCA/DNA-PK deficient AML and ALL PLXs, which were untreated or treated with DA+BMN673 (see Figure 7). Survival curves and MST \pm SE (8 mice/group); *p<0.001 using Kaplan-Meier LogRank test.


Supplementary Fig. 8. PARP1i olaparib combined with TKI exerted synergistic anti-Ph+ALL effect. Leukemia cells from patients with not mutated BCR-ABL1 kinase [Ph+ALL; n=3] and these from patients at relapse with T315I mutation [Ph+ALL(T315I); n=3] were untreated (C) or treated with 1 μ M imatinib (IM), 12.5nM ponatinib (P), 2.5 μ M olaparib (O) and a combination of IM + O or P + O. Living cells were counter after 5 days using Trypan blue; *p<0.02 in comparison to cells treated with individual drugs using two-way ANOVA.

Supplementary Fig. 9. Leukemia expressing AML1-ETO display BRCA/DNA-PK deficiency and are sensitive to PARP1i-mediated dual cellular synthetic lethality. (**A-C**) Non-transformed GFP+ mBMCs (Control) and those expressing AML1-ETO, and HOXA9 + MEIS1 were examined. (**A**) Western analysis; (**B**) Colonies from Parp1+/+ (solid bars) and Parp1-/- (transparent bars) mBMCs (triplicate experiment); *p=0.03 using Student t test. (**C**) Cells surviving olaparib treatment (triplicate experiment). (**D**) Lin⁻CD34⁺ LPCs/HPCs, Lin⁻CD34⁺CD38⁻CFSE^{max} quiescent and Lin⁻CD34⁺CD38⁻CFSE^{low} proliferating AML LSCs expressing AML1-ETO (n=3) and HSCs from healthy donors (Control, n=3) surviving olaparib treatment. (**E**) Colonies from GFP+ mBMCs (Control) and these expressing HOXA9 + MEIS1 or AML1-ETO, untreated (-) and treated with 1µg/ml DNR, 0.6125µM olaparib (O), or DNR+O (triplicate experiment); *p<0.02 in comparison to control using Student t test; **p≤0.006 in comparison to DNR and O using Student t test adjusted to multiple comparisons.

Supplementary Fig. 10. Proposed model of dual cellular synthetic lethality triggered by PARP1i. Leukemia cells (red), in contrast to normal counterparts (grey), accumulate numerous spontaneous and drug-induced DSBs (light blue cross). Currently approved drugs eliminate a bulk of proliferating LSCs/LPCs, but cannot eradicate drug-refractory quiescent LSCs and drug-resistant LSCs/LPCs. These cells could be eradicated by PARP1i causing dual cellular synthetic lethality in DNA-PK –deficient quiescent LSCs and BRCA/DNA-PK –deficient proliferating LSCs/LPCs, whereas normal cells will be spared.

Supplementary Fig. 11. BRCA/DNA-PK deficiency detected in various tumor types from individual patients in TCGA database. Numbers of BRCA/DNA-PK deficient samples/total numbers of samples are shown. Samples displaying biomarkers of BRCA/DNA-PK deficiency are marked by dots.

Diagnosis	ID	Molecular lesion	Karyotype
CML-CP	142	BCR-ABL1	46,XY,t(9;22)(q34;q11)
CML-CP	143	BCR-ABL1	46,XY,t(9,22)(q34;q11)
CML-CP	145	BCR-ABL1	46,XY,t(9;22)(q34;q11)
CML-CP	146	BCR-ABL1	46,XY,t(9;22)(q34;q11)
CML-CP	155	BCR-ABL1	Not available
CML-CP	158	BCR-ABL1	Not available
CML-CP	170	BCR-ABL1	46,XX,t(9;22)(q34;q11)
CML-CP	171	BCR-ABL1	46,XY,t(9;22)(q34;q11)
CML-CP	178	BCR-ABL1	Not available
CML-CP	179	BCR-ABL1	Not available
CML-AP	51	BCR-ABL1	Not available
CML-AP	52	BCR-ABL1	Not available
CML-AP	60	BCR-ABL1	Not available

Supplementary Table 1. Clinical annotation for CML cases.

Supplementary Table 2. Clinical annotation for AML cases.				
Diagnosis	ID	Molecular lesion	Karyotype	Flow cytometry
AML	201	Not available	Del12(q13-q15)	CD13, CD33, CD34, CD117
AML	687	AML1-ETO	46,XY,t(8;21)(q22;q22)	CD10-, CD13 dim +, CD14-, CD15 large subset +, CD19 dim +, CD20-, CD33+, CD34+, CD64-, CD79 dim +, HLA-DR+, TdT dim +
AML	1587	AML1-ETO	46,XY,t(8;21)(q22;q22),del(13)(q 12q22)	CD10-, CD13+, CD14-, CD15 var +, CD19 dim +, CD20-, CD33+, CD34 dim +, CD64 dim +, CD79-, HLA-DR+, TdT-
AML	2281	AML1-ETO	6,XX,t(8;21)(q22;q22),del(9)(q22)	CD10 variable +, CD13+, CD15-, CD19+, CD20 small +/-, CD33 dim variable +, CD34+, CD79+, HLA-DR+, TdT subset +
AML	132	FLT3(wt), NPM(wt)	Not available	Not available
AML	254	FLT3(wt), NPM(wt)	Not available	Not available
AML	8127	Not available	Not available	Not available
AML	9307	FLT3(TKD), NPM(na)	Not available	Not available
AML	80088	FLT3(wt), NPM(mut)	Not available	Not available
AML	80094	NPM(wt), FLT3(wt)	Not available	Not available
AML	80224	FLT3(wt), NPM(mut)	Not available	Not available
AML	80238	FLT3(wt), NPM(mut)	Not available	Not available
AML	90158	Not available	Not available	Not available
AML	90182	FLT3(wt), NPM(wt)	Not available	Not available
AML	100112	FLT3(wt), NPM(wt)	Not available	Not available
AML	747899	Not available	Not available	Not available

.

ID# 201 = PLX

Diagnosis	ID	Molecular lesion	Karyotype	Flow cytometry
B-ALL	ICN3	MLL-AF4	Not available	Not available
B-ALL	ICN12	E2A-PBX1	t(1;19)(q23;p13)	Not available
B-ALL	ICN13	MLL-AF4	t(4;11)(q21;q23)	Not available
B-ALL	LAX6	IGH-TCRB	t(7;14)(q34;q32)	Not available
B-ALL	LAX7	Not available	Not available	Not available
B-ALL	LAX7R	Not available	Not available	Not available
B-ALL	SFO1	Not available	Not available	Not available
B-ALL	PDX1	Not available	Not available	Not available
B-ALL	PDX12	Not available	Not available	Not available
B-ALL	PDX16	MLL-AF4	46,XY,t(4;11)(q21;q23)[1]/46,sl,t(9;14)(p?13;q?11.2	Not available
)[12]/46,sdl1,+X,-der(14)t(9;14)[3]/47,	
			sdl1,+X,add(9)(p2?2)[6]/46,XY[2]	
B-ALL	43	Not available	11q23	Not available
B-ALL	48	Not available	Not available	Not available
B-ALL	LAX9	BCR-ABL1	t(9;22)(q34;q11)	Not available
B-ALL	PDX2	BCR-ABL1	Not available	CD10, CD19, CD22, CD34,
				cytoplasmic CD79a,dim
				CD123, HLA-DR, and TdT+
B-ALL	TXL3	BCR-ABL1	t(9;22)(q34;q11)	Not available
B-ALL	BLQ1	BCR-ABL1 (T3151)	der(9), der(22)	Not available
B-ALL	BLQ5	BCR-ABL1 (T315I)	der(9), der(22)	Not available
B-ALL	LAX2	BCR-ABL1 (T315I)	t(9;22)(q34;q11)	Not available

Supplementary Table 4. Clinical annotation for t-MDS/AML cases.

Primary diagnosis	ID	Karyotype at t-MDS	Morphology at t-MDS
HD	L5021	del(5), del(18), +(2), +(3)	AML w/ multilineage dysplasia
Breast carcinoma	L5034	del5q, +8, +11	AML
Bladder carcinoma	L5030	normal	AML 40-50% blasts, hypercellular marrow (90%)
MM	L5047	monsomy 2, 11q13	MDS, hypercellular (40%), dysplastic megakaryocytes
NHL	L5043	del7q	AML 24% blasts, hypocellular marrow (20%)
NHL	L5035	del(5q),t(1;2), t(12;15), -2, -3, -21	MDS, RAEB2, 16.5% blasts
Ovarian carcinoma Cervical and rectal	L5168	del18q	MDS, hypercellular (59%), trilineage dyspoisis excess blasts (16%)
carcinoma, NHL	L5251	monosomy 5, monosomy 7	AML, hypercellular (50%), 27% blasts
NHL	L5075	normal	MDS, RAEB2, 15% blasts
NHL	L5164	inversion 1, +Y	MDS
Breast carcinoma	L5033	t(11;17)(q23;25), trisomy 6,8,12,18,19,20	AML, 84% blasts
Breast carcinoma	L5250	monosomy 7, del(5q)	MDS, normocellular, low-grade
NHL	L5166	del(20q)	normal, thrombocytopenia, anemia
HD/HIV	L5258	del7q	MDS, normocellular, low-grade
Cervical, rectal	15250	derrq	MDS, normocentuar, tow grade
carcinoma	L5232	del7q, monosomy 12	MDS, 6% blasts
NHL	L5069	monosomy 7	normal, anemia, thrombocytopenia
CLL NHL	L5261 L5217	monosomy 5, del7q, del4p, t(12;14)	MDS, <5% blasts, erythroid hyperplasia, dysmegakaryopoiesis MDS, normocellular
		del5q, del7q, del20q	
NHL Prostate, Kidney	L5071	monsomy 7, t(2;19), t(3;9), +20p	MDS, mild dyserythropoiesis
carcinoma	L5064	del3, -5, del6, del 16, del 17, +22,	MDS, multilineage dysplasia, <5% blasts
APL	L5144	del 7q	MDS, low-grade
AML	L5222	t(2;3)(p23;q29)	MDS, myeloid left shift
ALL	L5080	t(7;20), del 20q	MDS, hypercellular (>95%), 3-5% blasts

HD = Hodgkin disease, MM = multiple myeloma, NHL = non-Hodgkin lymphoma, CLL = chronic lymphocytic leukemia, APL = acute promyelocytic leukemia, AML = acute myeloid leukemia, ALL = acute lymphoblastic leukemia

Supplementary Table 5. Primer sequences for RT-qPCR analysis of B-ALLs

Gene	Sense primer (5'-3')	Antisense primer (5'-3')
PALB2	GGGACTTACTTCTCGGTCAGTGTAC	CGACCATTTCACAAAAGACCAA
BRCA1	GGAGGTCAGGAGTTCGAAACC	ACCGGCTAATTTCTGTATTTTTAGTAGAG
BRCA2	ACCTGTTAGTCCCATTTGTACATTTG	CACAACTCCTTGGTGGCTGAA
RAD51	TTCAGGCCAGTGTGGTGTCTT	TGGGCTCAAGCGATCCA
PRKDC	CTGATGGACCAGGCAACAGA	TCCAGGGCTCCCATCCTT
XRCC5	TGTGTTGAGCAAGCAGTAGCATT	AGTCCGTCCTTACCCATGGTT
XRCC6	TGGCCTTGGATTTGATGGA	CAGTCTTTTATTCATTGCTTCAACCT
LIG4	ATGGCTTCTCTGATTGCTGATTT	CGGTGTGGCGTCGAAAC
COX6b	AACTACAAGACCGCCCCTTT	GCAGCCAGTTCAGATCTTCC

Supplementary Table 6. Primer sequences for RT-qPCR analysis of t-MDS/AML.

Hs00984230_m1	B2M
Hs01556193_m1	BRCA1
Hs00609073_m1	BRCA2
Hs02758991_g1	GAPDH
Hs01866071_u1	LIG4
Hs00227120_m1	NHEJ1
Hs00226617_m1	PALB2
Hs04195439_s1	PRKDC
Hs00427442_m1	RAD51C
Hs00979545_g1	RAD51D
Hs03044154_m1	XRCC2
Hs00193725_m1	XRCC3
Hs00897854_m1	XRCC5
Hs01922655_g1	XRCC6

Supplementary references

- 1. Figueroa, M.E., Lugthart, S., Li, Y., Erpelinck-Verschueren, C., Deng, X., Christos, P.J., Schifano, E., Booth, J., van Putten, W., Skrabanek, L., et al. 2010. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. *Cancer Cell* 17:13-27.
- 2. Kharas, M.G., Lengner, C.J., Al-Shahrour, F., Bullinger, L., Ball, B., Zaidi, S., Morgan, K., Tam, W., Paktinat, M., Okabe, R., et al. 2010. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. *Nat Med* 16:903-908.
- 3. Slupianek, A., Nowicki, M.O., Koptyra, M., and Skorski, T. 2006. BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells. *DNA Repair (Amst)*. 5:243-250. Epub 2005 Nov 2016.
- 4. Seluanov, A., Mao, Z., and Gorbunova, V. 2010. Analysis of DNA double-strand break (DSB) repair in mammalian cells. *J Vis Exp* 43:1-6.
- 5. Mao, Z., Jiang, Y., Liu, X., Seluanov, A., and Gorbunova, V. 2009. DNA repair by homologous recombination, but not by nonhomologous end joining, is elevated in breast cancer cells. *Neoplasia* 11:683-691.
- Podszywalow-Bartnicka, P., Wolczyk, M., Kusio-Kobialka, M., Wolanin, K., Skowronek, K., Nieborowska-Skorska, M., Dasgupta, Y., Skorski, T., and Piwocka, K. 2014. Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation. *Cell Cycle* 13:3727-3741.
- 7. Zhang, J., Ding, L., Holmfeldt, L., Wu, G., Heatley, S.L., Payne-Turner, D., Easton, J., Chen, X., Wang, J., Rusch, M., et al. 2012. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. *Nature* 481:157-163.