Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain

Anand Kumar Singh, Joanna Zajdel, Elahe Mirrasekhian, Nader Almoosawi, Isabell Frisch, Anna M. Klawonn, Maarit Jaarola, Michael Fritz, and David Engblom

Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.

Pain is fundamentally unpleasant and induces a negative affective state. The affective component of pain is mediated by circuits that are distinct from those mediating the sensory-discriminative component. Here, we have investigated the role of prostaglandins in the affective dimension of pain using a rodent pain assay based on conditioned place aversion to formalin injection, an inflammatory noxious stimulus. We found that place aversion induced by inflammatory pain depends on prostaglandin E₂ that is synthesized by cyclooxygenase 2 in neural cells. Further, mice lacking the prostaglandin E₂ receptor EP₁ selectively on serotonergic cells or selectively in the area of the dorsal raphe nucleus failed to form an aversion to formalin-induced pain, as did mice lacking the serotonin transporter. Chemogenetic manipulations revealed that EP₁ receptor activation elicited conditioned place aversion to pain via inhibition of serotonergic neurons. In contrast to their role in inflammatory pain aversion, EP₂ receptors on serotonergic cells were dispensable for acute nociceptive behaviors and for aversion induced by thermal pain or an opioid receptor agonist. Collectively, our findings show that prostaglandin-mediated modulation of serotonergic transmission controls the affective component of inflammatory pain.

Introduction

Pain is an adaptive warning signal under physiological conditions, but it also causes a lot of suffering during various pathological states. Pain is a complex phenomenon with many components. The sensory component provides information about location, intensity, and quality of the painful event (1). In addition, pain is inherently unpleasant and induces a negative affective state (2, 3). Converging evidence indicates that the brain regions mediating the sensory and the affective components of pain are, at least partly, distinct (1, 4–6).

Prostaglandins are key regulators of nociceptive processing during inflammation, and prostaglandin synthesis inhibitors in the form of nonsteroidal antiinflammatory drugs are widely used for their analgesic properties. Prostaglandins modulate nociceptive signaling at many levels of the neuraxis (7), but it is unclear how they are involved in the affective dimension of pain.

Results and Discussion

To investigate the affective component of pain in mice, we used conditioned place avoidance induced by inflammatory pain. This test, in which mice learn to avoid a chamber where they experienced pain induced by formalin injection to the hind paw, has been used extensively to investigate the affective component of pain in rodents (3, 5, 6, 8). To explore the role of prostaglandins, we first interfered with the cyclooxygenases COX1 and COX2 (also known as PTGS1 and PTGS2), enzymes responsible for prostaglandin synthesis. Normal (WT) mice, mice lacking COX1, and mice pretreated with a COX1 selective inhibitor (sc5560, 5 mg/kg, i.p.; Figure 1B) avoided the chamber paired with formalin injections (Figure 1, A and B; for figures showing the behavioral experiments with individual values indicated, see Supplemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/JCI90678DS1). In contrast, the aversion was completely blocked in genetically modified mice lacking COX2 activity (Figure 1C) and when COX2 was inhibited (parecoxib, 10 mg/kg) during the pain sessions (Figure 1D). To identify the cell type producing the critical prostaglandins, we next used the Cre/loxP system to delete Cox2 in specific cell types. Mice without COX2 in myeloid cells (Cox2Δ/Δ LysM-Cre; Figure 1E) or in brain endothelial cells (Cox2Δ/Δ Slo1c1-Cre mice; Figure 1F) displayed aversion comparable to that of littermates without Cre (WT mice). In contrast, mice without COX2 in neural cells (Cox2Δ/Δ Nes-Cre mice), including peripheral and central neurons and glia, showed no avoidance behavior (Figure 1G).

Prostaglandin E₂ is the principal proinflammatory prostaglandin and an important regulator of nociceptive and systemic inflammatory responses (7, 9–11). We tested mice lacking mPGES-1, the inducible form of prostaglandin E synthase, in our pain model (mPges-1 KO mice). These mice displayed significantly lower aversion scores compared with their WT littermates (Figure 1H). Prostaglandin E₂ binds to 4 G protein–coupled receptors called EP₁ to EP₄ (encoded by Ptger1-4). We tested mice lacking EP₁ or EP₄ receptors, since these are strongly expressed in brain structures related to motivation (12, 13) and have been shown to be implicated in nociceptive processing (14–16). Mice lacking EP₄ receptors (Ptger1-4 KO mice, referred to as EPIR KO mice) did not show any difference in
aversion scores compared with WT littersmates (Figure 2A). In contrast, Ptger3 knockout (EP3R KO) mice displayed no pain-induced aversion (Figure 2B).

EP3 receptors are expressed in many structures of the brain and the spinal cord. Given the important role of serotonin in the regulation of affective functions, the EP3 receptor expression in serotonergic neurons of the dorsal raphe nucleus and other serotonergic structures (12) is particularly interesting in the context of aversion. To explore the role of EP3 receptors on serotonergic neurons, we next used Ptger3 flox/flox Sert-Cre mice (referred to as EP3R-SERTCre mice). In these mice, Ptger3 is deleted by Cre expressed under control of the serotonin transporter (Sert) promoter. As expected, Cre expression was specific to serotonergic neurons, identified by labeling for tryptophan hydroxylase (TPH) (Figure 2, C and D). Further, EP3R-SERTCre mice displayed a clear reduction of 5-hydroxytryptamine (5-HT) (Figure 2, C and D). Further, aversion was completely blocked in mice lacking EP3Rs on serotonergic neurons (Figure 2J). Further, mice without EP3Rs on serotonergic cells blocked the aversion induced by injection of diluted formalin in the dorsal part of the hind paws in mice lacking COX1 (Cox1 KO) (A), mice treated with a COX1 inhibitor (Cox1 inhibit) (sc560, 5 mg/kg, i.p.; B), mice lacking COX2 (Cox2 KO) (C), mice treated with a COX2 inhibitor (parecoxib, 10 mg/kg, i.p.; D), and corresponding control mice. (E) Aversion scores in mice lacking COX2 in myeloid cells (Cox2fl/fl LysM-Cre). See Supplemental Methods for calculation of aversion scores. (F and G) Aversion scores in mice lacking COX2 in brain endothelial cells (Cox2fl/fl Sert-Cre) or mice lacking COX2 in neural cells (Cox2fl/fl Nes-Cre). (H) Aversion is also blocked in mice lacking the inducible microsomal prostaglandin E synthase (mPGES-1 KO). *P < 0.05; **P < 0.01, Student’s t test.

ly, these findings strongly suggest that ascending serotonergic transmission is critical for pain-induced aversion and that prostaglandin E2 can modulate such transmission by a direct effect on EP3 receptors on serotonergic neurons.

Since most EP3 splice variants are coupled to inhibitory G proteins, we investigated whether EP3 activation elicits aversion by inhibition of serotonergic neurons. To test this, we used a designer receptor exclusively activated by designer drug–based (DREADD-based) chemogenetic approach (19) to maintain firing in serotonergic cells during the painful experience and monitored the aversive response of the mice. We injected viral vectors with Cre-dependent expression of Gq-coupled DREADDs (hM3Dq) or mCherry in EP3R-SERTCre mice (AAV-hM3Dq EP3R-SERTCre and AAV-mCherry EP3R-SERTCre mice; Figure 2I) and activated the cells by administration of clozapine N-oxide (CNO) before the formalin injections. Strikingly, chemogenetic activation of serotonergic cells blocked the aversion (Figure 2I). Further, mice without EP3Rs on serotonergic cells, which normally display no pain-induced aversion, showed a normal aversion when their serotonergic cells were inhibited during the formalin-pain session (Figure 2, K and L). This was achieved by stereotaxic injections of AAVs encoding Gi-coupled DREADDs (hM4Di) or mCherry in EP3R-SERTCre mice (AAV-hM4Di EP3R-SERTCre and AAV-mCherry EP3R-SERTCre mice, respectively; Figure 2K).

Next, we investigated whether the prostaglandin-dependent pathway identified was specific to the affective component of pain or whether it was necessary for all aspects of pain. We monitored acute formalin-induced nociceptive behaviors (lifting, shaking, and licking the injected paw) in mice subjected to pharmacological inhibition of COX2 in mice lacking EP3 receptors, as well as lack of mPGES-1, markedly reduced the nociceptive behaviors in the second phase of the formalin test (Figure 3, A and
BRIEF REPORT

displayed normal sucrose preference, normal withdrawal laten-
tics in the hot-plate test, and normal real-time avoidance of a
hot floor (Supplemental Figure 2, B–D). Thus, prostaglandin-
mediated modulation of serotonergic signaling selectively con-
trols aversion to inflammatory pain.

The finding that EP3 receptors on serotonergic neurons reg-
late the affective component of pain is in line with the central
role of serotonin in affective functions (17) and may have rel-
levance for the high comorbidity of pain and depression. Popu-
lations of serotonergic cells are modulated by aversive stimuli
(22), including pain (23), as well as by rewarding stimuli (24).

B), whereas they were unaffected in EP3R-SERTCre mice (Figure
3, C and D). This indicates that prostaglandin E2 modulates
many components of pain, but that the effect on serotonergic
transmission selectively controls the affective dimension. We
also found a normal febrile response in EP3R-SERTCre mice
(Figure 3E), indicating that responses driven by EP3Rs in nonse-
rotonergic cells were intact (20, 21). Further, aversion induced
by the κ opioid receptor agonist U-50488 (2.5 mg/kg, i.p.) was
intact in EP3R-SERTCre mice (Figure 3F), and both Cox2fl/fl
Nes-Cre and EP3R-SERTCre mice displayed a robust aversion
to thermal pain (Figure 3, G and H). EP3R-SERTCre mice also
displayed normal sucrose preference, normal withdrawal laten-
cies in the hot-plate test, and normal real-time avoidance of a
hot floor (Supplemental Figure 2, B–D). Thus, prostaglandin-
mediated modulation of serotonergic signaling selectively con-
trols aversion to inflammatory pain.

The finding that EP3 receptors on serotonergic neurons reg-
late the affective component of pain is in line with the central
role of serotonin in affective functions (17) and may have rel-
levance for the high comorbidity of pain and depression. Popu-
lations of serotonergic cells are modulated by aversive stimuli
(22), including pain (23), as well as by rewarding stimuli (24).
Further, serotonergic neurotransmission mediates adaptive danger avoidance (25), can induce fear and anxiety (26), and regulates affective responses to stress (27, 28). The affective responses to stress are mediated by a transient increase in serotonin reuptake in the ventral striatum, leading to a local hypo-serotonergic state (29). Prostaglandin-mediated inhibition of serotonergic neurons is not restricted to inflammatory pain, but different peripheral signaling routes, cyclooxygenases, EP receptor subtypes, and monoaminergic neuronal populations are involved.

In summary, we show that persistent inflammatory pain induces aversion through a mechanism involving neural prostaglandin synthesis and EP3 receptors on serotonergic cells. Whereas prostaglandins and serotonin modulate nociceptive processing at many levels, this mechanism selectively regulates the affective dimension of inflammatory pain.

Methods

Additional methods are provided in the Supplemental Methods.

Statistics. All the data are expressed as mean ± SEM and were analyzed (in GraphPad Prism) using 2-tailed Student’s t tests, except for body temperature measurements, which were analyzed with 2-way ANOVA. P < 0.05 was considered significant. The number of mice are specified in Supplemental Figure 1 or the figure legends.

Study approval. All experiments were approved by the Linköping Animal Care and Use Committee and followed national and international guidelines.

Author contributions

AKS, JZ, and DE were responsible for overall study design. AKS performed the behavioral/physiological experiments except for those involving EP3-KOs (AMK and MF), fever (EM), or thermal pain and sucrose preference (NA, IF, and JZ). MF designed, implemented, and introduced others to the formalin conditioning protocol. Viral injections and histological validations were done by JZ. Quantitative PCR (qPCR) analysis was done by JZ, AKS, MJ, and NA. The manuscript was written by DE, AKS, and JZ. All authors were involved in the design of the parts of the study they executed, discussed the design and results, and commented on the manuscript.

Acknowledgments

This study was supported by the European Research Council, the Swedish Medical Research Council, the Knut and Alice Wallenberg Foundation, and the Swedish Research Council. We thank K. Steiner for critical reading of the manuscript and comments. We thank B. Linnarsson, E. Lysen, L. Märtensson, and I. Flink for constructive suggestions and comments. We thank the core facility for histological validations and the Linköping University Animal research facility for care of animals and technical assistance.

Figure 3. The involvement of EP3 receptors on serotonergic cells is specific for the affective component of pain. (A and B) Nociceptive scores in mice given a COX2 inhibitor or mPGES-1 KO mice (parecoxib, 10 mg/kg, i.p.; n = 9 ± 6). B shows means of the scores during the peak of the second phase of the formalin-induced pain (defined as -30–40 minutes after injection). See Supplemental Methods for calculation of nociceptive scores. (C and D) Corresponding data for mice lacking EP1 receptors in serotonergic cells (EP3R-SERTCre; n = 5 ± 5). Note that the blunted response seen after COX2 inhibition cannot be seen in EP3R-SERTCre mice. (E) Fever responses in WT and EP3R-SERTCre mice. Mean body temperatures 5 to 9 hours after an injection of lipopolysaccharide (100 μg/kg) are plotted. (F) Aversion scores in response to the κ receptor agonist USO488 (2.5 mg/kg, i.p.). Note that EP3R-SERTCre mice display normal acute nociceptive responses and a normal U-50488–induced aversion. (G and H) Conditioned place aversion induced by thermal pain in Cox2fl/fl Nes-Cre mice (G) and EP3R-SERTCre mice (H) and their WT littermates. **P < 0.01; ***P < 0.001, Student’s t test (B, D, and F–H); ANOVA (E).
Wallenberg Foundation, the Swedish Brain Foundation, and the County Council of Östergötland. The Sert-Cre line was from the Mutant Mouse Regional Resource Center and was originally donated by the GENSAT BAC transgenic project, funded by the National Institute of Neurological Disorders and Stroke (NINDS). We thank Harvey R. Herschman for providing the Cox2ff line, Markus Schwaninger for providing the Sloc1c1-CreER line, Anders Blomqvist for providing several mouse lines, Johan Jakobsson for input on viral vectors, and Johanna Karlsson for technical assistance.

Address correspondence to: David Engblom, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden. Phone: 46.101038448; E-mail: david.engblom@liu.se.