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strategies targeting TGF-f for NSCLC.

Introduction

Non-small-cell lung carcinoma (NSCLC) is among the most
commonly diagnosed cancers worldwide (1, 2). The prognosis
of NSCLC remains poor, and the overall 5-year relative surviv-
al rate, including all stages and subtypes, is less than 20% (1,
3). Like nearly all cancer types, metastasis represents the main
cause of death in patients with NSCLC. Biologically, tumor
metastasis is a multistep, complex process that is typically driven
by aberrant activation or suppression of one or more signal trans-
duction pathways (4). Notably, among the pathways frequently
dysregulated in cancer metastasis, TGF-p signaling has been
widely demonstrated as one of the most commonly activated
and essential pathways for the metastasis of various cancer types
(5, 6). Indeed, activation of TGF-p signaling is closely related to
NSCLC progression and metastasis (7-9), whereas the mecha-
nisms that activate and sustain prometastatic TGF-B signaling
remain incompletely understood.

Activation of the TGF-p signaling cascade is typically initi-
ated by binding of a TGF-p ligand with the TGF-p type II serine/
threonine receptor (TGFBR2), followed by phosphorylation and
oligomerization of TGFBR1/2, which causes phosphorylation of
the cytoplasmic effectors SMAD2 and SMAD3. Phosphorylated
SMAD?2 or SMAD3 subsequently forms a heteromeric complex
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cancer cells. Our current study using non-small-cell lung carcinoma (NSCLC) cell lines, animal models, and clinical specimens
demonstrates that suppression of SMAD2, with SMAD3 function intact, switches TGF-$-induced transcriptional responses

to a prometastatic state. Importantly, we identified chaperonin containing TCP1 subunit 6A (CCT6A) as an inhibitor and

direct binding protein of SMAD2 and found that CCT6A suppresses SMAD2 function in NSCLC cells and promotes metastasis.
Furthermore, selective inhibition of SMAD3 or CCT6A efficiently suppresses TGF-p-mediated metastasis. Our findings provide
a mechanism that directs TGF-f signaling toward its prometastatic arm and may contribute to the development of therapeutic

with SMAD4 and is transported to the nucleus, where it binds with
other DNA-binding transcription factors and consequently regu-
lates the transcription of TGF-B target genes (5, 6, 10, 11).

It has been noted that the biological and clinical outcomes of
TGF-B signaling in cancer are far more complex than was previously
understood, and these effects may be more cancer type and biologi-
cal context dependent than expected. Alterations of pathway compo-
nent proteins, binding partners of SMADs, and microenvironmental
factors may lead to variable cellular responses to TGF-f stimulation
(6, 12). For example, in benign epithelia and early tumor initiation,
TGF-B inhibits epithelial growth and plays a tumor-suppressive
role; in contrast, in advanced tumors, dysregulated TGF-f signal-
ing promotes tumor progression and metastasis by enhancing the
epithelial-mesenchymal transition (EMT) and cancer cell coloniza-
tion in distant organs (6, 12-16). Moreover, additional studies have
demonstrated that in several types of cancer, the tumor-suppressive
arm of TGF- signaling may be terminated (17-23). Notably, this
complexity of TGF-f signaling has complicated the initially expect-
ed feasibility of targeting this pathway as an effective antimetastatic
strategy. Both preclinically and clinically, the development of TGF-
BR inhibitors or ligand traps has not been successful (24, 25). Thus,
while TGF- is a central promoter of metastasis and may therefore
represent a potentially promising antimetastatic target, a better
understanding of the molecular mechanism that directs TGF- sig-
naling to promote metastasis will facilitate the development of effec-
tive TGF-B-targeting antimetastasis approaches.

In the context of distinguishing the antiproliferative and pro-
metastatic arms of TGF-f signaling, it is particularly notewor-
thy that SMAD2 and SMAD3 comprise 2 major TGF-f} receptor-
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Figure 1. NSCLC metastasis is associated with inactivation of SMAD2-me-
diated and activation of SMAD3-mediated transcriptional programs. (A)
Analysis of publicly available MSKCC NSCLC data sets 1and 2 indicates
that the mRNA expression of TGFB1, TGFB2, and TGFB3 is significantly
increased in patients with stage 3 or stage 4 NSCLC. n = 153 cases (stage 1);
n =35 cases (stage 2); n = 43 cases (stage 3); and n = 5 cases (stage 4). Box
and whiskers plots represent the mRNA levels. *P < 0.05 and **P < 0.01,
by 1-way ANOVA. (B) Kaplan-Meier analysis indicates that when stratifying
patients by the median level of overall TGFB (average of TGFB1, TGFB2, and
TGFB3), a high level of overall TGFB (average of TGFB1, TGFB2, and TGFB3)
is associated with a shorter metastasis-free survival time in patients in

the MSKCC NSCLC data sets 1and 2. (C) Heatmap of the ChIP enrichment
signal surrounding SMAD2 and SMAD3 peaks shows the chromosomal
distribution of SMAD2 and SMAD3 in the indicated A549 cells. (D) GSEA
and Kaplan-Meier analysis indicate that attenuated SMAD2-specific and
enhanced SMAD3-specific transcripts are present in NSCLC patients with
an increased metastatic potential in association with a shorter metastasis-
free survival in the MSKCC NSCLC data set 1, whereas targeted genes shared
by both SMAD2 and SMADS3 are not associated with metastasis status. The
definition of “high” and “low” expression of each gene set was stratified by
the median of the normalized expression levels of each gene in the set. ES,
enrichment score; NES, normalized enrichment score.

regulated SMADs (R-SMADs) activated by TGF-B stimulation.
Interestingly, SMAD2 and SMAD?3 are structurally similar to each
other and are functionally related in many physiological scenarios;
however, abundant evidence suggests that these R-SMADs have
different functions through the control of distinct transcriptional
programs and play distinguishable roles during cancer progression
(6). For example, depletion of SMAD2, but not SMAD3, results
in enhanced cell invasion, metastasis (21, 26), and angiogenesis
(26, 27) in skin squamous carcinoma and breast cancer. Nota-
bly, in specific types of cancer, such as colorectal and pancreatic
cancers, genomic deletion or loss-of-function mutations of the
SMAD?2 gene are common, whereas in many other cancer types,
including lung cancer and breast cancer, genomic alterations of
SMAD? are rarely present (5, 28, 29). Moreover, clinical data and
specimens collected in The Cancer Genome Atlas (TCGA) pub-
lic database indicate that less than 2% of NSCLC patients carry
a genetic lesion in the SMAD2 gene. Thus, on the backdrop that
overexpression of TGF-B ligand has been linked to metastasis and
predicts poor prognosis in NSCLC patients (7, 8, 30), the mecha-
nisms through which the TGF-p-induced metastasis-suppressive
biological effects of SMAD2 are abrogated, such that TGF-p sig-
naling becomes prometastatic in NSCLC, remain to be elucidated.

It is also noteworthy that SMAD2 and SMAD?3 are responsible
for the transactivation of cell-cycle inhibitory genes (31, 32) and
the suppression of epithelial markers (33) following TGF-f stim-
ulation; however, the overall transactivating effects of these 2
molecules at the genome-wide scale in cancer cells remain largely
unknown. Furthermore, whether these molecules independently
interact with different binding partners, such that the transcrip-
tomes and the consequent biological effects resulting from SMAD2
and SMAD3 activation are distinct, remains to be resolved. In the
present study, we sought to identify whether and how these 2
R-SMADs contribute to TGF-p-promoted cancer metastasis and
aggressiveness. Our results demonstrate that SMAD2 and SMAD3
play distinct roles in the progression of NSCLC, with SMAD?2 func-
tioning as a mediator of the TGF-B-induced transcriptional pro-
gram that suppresses metastasis, whereas SMAD3 transactivates
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a transcriptome that promotes metastasis following TGF-B stim-
ulation. In additional mechanistic studies, we demonstrated that
chaperonin containing TCP1 subunit 6A (CCT6A), a previously
identified but functionally uncharacterized SMAD2-specific inter-
active protein (34), suppresses SMAD2 function and promotes
TGF-p-induced metastasis in NSCLC. Our findings indicate that
in NSCLC, suppression of the SMAD2-mediated transcription
program may constitute a prominent mechanism that underlies
the prometastatic effects of TGF-B signaling, whereas targeting
SMAD?3 or the specific SMAD2 inhibitor CCT6A may represent a
novel, potentially promising antimetastasis strategy for the man-
agement of NSCLC.

Results

NSCLC metastasis is associated with inactivation of SMAD2-mediated
and activation of SMAD3-mediated transcriptional programs. To
understand the correlation between TGF-f3 and NSCLC metastasis
and progression, we initially analyzed a cohort of patients from the
Memorial Sloan Kettering Cancer Center (MSKCC) NSCLC data
set (35) and determined that TGF-B1, -B2, and -B3 (TGF-p1/2/3)
levels were significantly increased in tumor tissues excised from
patients with advanced-stage (stages 3 and 4) disease (Figure
1A). Moreover, a high overall TGF-f level (average of normalized
TGF-B1/2/3 expression) (36) was associated with an increased
metastatic potential in the same cohort of patients, which further
supports the previously and widely recognized notion that TGF-
plays a promoting role in NSCLC metastasis (Figure 1B).

To identify the downstream molecular events that mediate
the prometastatic effect of TGF-f stimulation, we began by inves-
tigating whether SMAD2 and SMAD3 mediate the same or poten-
tially different biological effects in TGF-B-promoted NSCLC
metastasis. We initially analyzed the genome-wide distribution
of SMAD2 and SMAD3 in response to TGF-f treatment in A549
and Calu3 NSCLC cells. Our ChIP-sequencing (ChIP-seq) results
indicated that, following the addition of TGF- to cultured A549
cells, SMAD2 and SMAD3 were recruited to 3,372 and 1,375 dis-
tinct enhancer elements, respectively; these 2 SMADs also simul-
taneously co-occupied 1,291 enhancer elements (Figure 1C and
Supplemental Figure 1B; supplemental material available online
with this article; https://doi.org/10.1172/JCI90439DS1). Similar
recruitment patterns of SMAD2 and SMAD3 were also identified
in Calu3 cells, and 87% of the SMAD-binding elements were com-
mon in A549 and Calu3 cells (Supplemental Figure 1, A and B).
Previous reports have demonstrated competitive binding between
SMAD2 and SMAD3 on individual promoters (21, 26). At the
genome-wide level, to understand whether silencing of SMAD2 or
SMAD3 would affect the distribution of the other factor, we per-
formed ChIP-seq analysis of SMAD2 and SMAD3 in cells with 1
of the 2 R-SMAD:s silenced (Supplemental Figure 1C). Our results
indicated that silencing SMAD2 only reduced the SMAD2 occu-
pancy; it did not disrupt the SMAD3 distribution, and vice versa
(Figure 1C and Supplemental Figure 1A). These findings suggest
that SMAD2 and SMAD3 are not always recruited to the same
sites in response to TGF-p stimulation and may be mutually and
independently recruited to most of their corresponding enhancer
sites. To further elucidate the positional relationship between the
SMAD-binding sites and the transcription start sites (TSSs) on the
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Figure 2. TGF-p-induced metastasis of NSCLC is suppressed by SMAD2
and promoted by SMAD3. (A-D) Mice were intravenously tail-vein injected
with the indicated NSCLC cells. Luciferase live-cell imaging (A and C), picric
acid staining of metastatic foci, and H&E staining of lung tissue (B and D)
indicated that the knockdown of SMAD2 promoted, whereas knockdown of
SMAD3 suppressed, the survival and metastasis of NSCLC cells expressing
TGF-B. Luciferase-labeled images of live mice at different time points fol-
lowing intravenous tail-vein injection of the indicated NSCLC cells are pre-
sented in Supplemental Figure 2A. Representative images shown are from
2 independent experiments, with 6 mice per group in each independent
experiment. Scale bars: 100 pm. (E-H) Mice were subcutaneously injected
with the indicated NSCLC cells into inguinal folds. Luciferase live-cell
imaging (E and G), picric acid staining of metastatic foci, and H&E staining
of lung tissue (F and H) indicated that knockdown of SMAD2 promoted,
whereas knockdown of SMAD3 suppressed, the metastasis potential of
NSCLC cells. Luciferase-labeled images of live mice at different time points
following subcutaneous injection of the indicated NSCLC cells into inguinal
folds are presented in Supplemental Figure 2J. Representative images are
from 2 independent experiments, with 6 mice per group in each indepen-
dent experiment. Scale bars: 100 um. p, photons; sr, steradian.

genome, we compared the profiles of average binding densities
between SMADs and H3K4me3 in TGF-f-treated A549 and Calu3
cells. We found that the binding of SMAD2 and SMAD3 on the
genome was peaked upstream of the H3K4me3-enriched regions,
indicating that SMAD2 and SMAD3 might primarily be recruited
to the promoter/enhancer regions of their targeted genes and may
be involved in the transcriptional regulation of their downstream
genes (Supplemental Figure 1D). Analysis of mRNA expression
profiles showed that silencing SMAD2 or SMAD3 significantly
attenuated the expression of TGF-B-induced transcripts whose
enhancers were distinctly occupied by SMAD2 or SMAD3, respec-
tively, and to a lesser extent attenuated the expression of the tar-
get transcripts whose enhancers were shared by both R-SMADs
(Supplemental Figure 1E). These findings suggest that SMAD2 or
SMAD3 isrequired for increased transactivation of these distinctly
or commonly bound enhancers in response to TGF- stimulation,
and the alteration of the transcriptional profile following silencing
of SMAD2 or SMAD3 was mainly attributed to suppression of the
respective set of target genes.

We subsequently investigated whether these SMAD target
gene sets were associated with NSCLC metastasis. In both the
MSKCC NSCLC data sets 1 and 2, we determined that decreases
in SMAD2-specific and increases in SMAD3-specific transcripts
were present in NSCLC patients with an increased metastatic
potential and a shorter metastasis-free survival time (Figure 1D
and Supplemental Figure 1F). Moreover, the expression levels of
genes commonly transcribed by both SMAD2 and SMAD3 were
not significantly correlated with the metastasis status (Figure
1D and Supplemental Figure 1F). These findings suggest that
SMAD2-specific transcriptional targets may negatively contrib-
ute, whereas SMAD3-specific transcriptional targets positively
contribute, to NSCLC metastasis.

TGF-f-induced metastasis of NSCLC is suppressed by SMAD2
and promoted by SMAD3. The findings that the suppression of
SMAD2-mediated transcripts and the activation of SMAD3-
dependent transcripts correlated with a high metastatic poten-
tial in NSCLC patients prompted us to investigate whether these
2 R-SMADs play different roles in TGF-p-induced metastasis in
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vivo. In our subsequent in vivo study, we determined that 30 days
after tail-vein injection, the ectopic overexpression of TGF-p1 in
A549 cells promoted metastasis, as shown by luciferase live-cell
imaging, picric acid staining of metastatic lesions, H&E stain-
ing, and immunohistochemical staining, strongly indicating that
TGF-B acts as a metastasis promoter in NSCLC cells (Figure 2,
A and B; and Supplemental Figure 2, A, C, D, G, and I). Further-
more, silencing of SMAD?2 further enhanced, whereas silencing of
SMAD3 abrogated, TGF-B-induced metastasis (Figure 2, A and B;
and Supplemental Figure 2, A, C, D, G, and I). Moreover, the sur-
vival time of A549 cell-injected mice was shortened when TGF-f1
was overexpressed, and the survival time was further shortened
when SMAD?2 was silenced; however, the survival time was pro-
longed when SMAD3 was silenced in TGF-Bl-overexpressing
A549 cells (Supplemental Figure 2, B and H). For PC9 cells, which
have been demonstrated to be more metastatic than A549 cells,
silencing of SMAD3 also significantly attenuated metastasis,
whereas silencing of SMAD?2 slightly enhanced TGF-p-induced
metastasis and did not further reduce the survival time of the
injected mice (Figure 2, C and D; and Supplemental Figure 2, A, B,
and E-I). Furthermore, in a spontaneous metastasis model, using
highly metastatic human PC9 NSCLC cells and murine Lewis
lung carcinoma (LLC) cells, TGF-B promoted both primary tumor
growth and the formation of metastases (Figure 2, E-H, and Sup-
plemental Figure 2, J-L). Consistent with the previously described
results, silencing SMAD3 attenuated, whereas silencing SMAD2
slightly enhanced, metastasis and primary tumor growth (Figure
2, E-H, and Supplemental Figure 2, J-L).

Furthermore, we used an immunocompetent mouse model
(C57BL/6 mice), in which mice were tail-vein-injected with LLC
cells. Our results showed that on day 50 after injection of shVec-
tor-, SMAD2-silenced, or SMAD3-silenced LLC cells, togeth-
er with or without ectopic expression of TGF-B1, luciferase live
imaging and picric acid staining of metastatic lesions showed that
TGF-pmoderately promoted metastasis and that silencing SMAD2
slightly enhanced the metastasis of LLC cells, whereas silencing
SMAD3 diminished the metastasis of LLC cells induced by TGF-p
(Supplemental Figure 2, M and N). Moreover, Kaplan-Meier plot
analysis showed that the survival time of the mice was shortened
when TGF-B was ectopically expressed, but silencing SMAD2 did
not further reduce the survival time of the C57BL/6 mice (Supple-
mental Figure 20). In contrast, the survival time was significantly
(P < 0.01) prolonged when SMAD3 was silenced (Supplemental
Figure 20). The above results obtained from both the nude mice
xenografts model and the immunocompetent C57BL/6 mice
model further support the notion that SMAD2 suppresses, but
SMAD3 enhances, the metastasis promoted by TGF-$ in NSCLC.

SMAD?2 mediates a tumor-suppressive transcriptional program,
whereas SMAD3 mediates a pro-cell survival transcriptional program,
in NSCLC cells. To gain a global view of the functions of genes dis-
tinctly governed by SMAD2 and SMAD3, a gene ontology (GO)
enrichment analysis was performed. As shown in Supplemental
Figure 3, A-C, SMAD3 mainly affected the expression of devel-
opmental regulators, particularly members of the Frizzled family.
In contrast, SMAD2 tended to govern the expression of genes that
induce apoptosis and differentiation, including negative regula-
tors of Wnt signaling (Supplemental Figure 3, A-C). Interestingly,
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Figure 3. SMAD2 mediates a tumor-suppressive transcriptional program, whereas SMAD3 mediates a pro-cell survival transcriptional program, in
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vehicle control of TGF-f solution.

genes co-occupied by SMAD2 and SMAD3 were mainly involved
in protein synthesis, particularly ribosome proteins and elonga-
tion factors (Supplemental Figure 3, A-C). These findings indicate
that TGF-f signaling through SMAD2 or SMAD3 may attenuate or
enhance multiple pro-cell survival pathways, respectively, includ-
ing the Wnt pathway, which is closely correlated with NSCLC
metastasis through the promotion of colony outgrowth (37).

To understand whether the cellular functions of SMAD2 and
SMAD3 indicated by GO enrichment and in vivo assays are differ-
ent, we analyzed the in vitro cellular effects of SMAD2 or SMAD3
depletion in both A549 and PC9 cells. We found that following

1730
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TGF-B treatment, under standard and cell culture conditions,
silencing SMAD3 suppressed colony and tumor sphere formation
(Figure 3, A and B; and Supplemental Figure 3D) and reduced the
proportion of side-population cells (Supplemental Figure 3E). Fur-
thermore, when cells were detached from their substratum and
cultured in suspension, silencing SMAD3 significantly increased
the cellular sensitivity to anoikis (Figure 3C and Supplemental
Figure 3F). These findings suggest that SMAD3 is a promoter of
cell survival, particularly under stress conditions, such as the loss
of cellular contact. Furthermore, following TGF-p stimulation,
silencing of SMAD2 enhanced cell survival only in A549 cells and
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independent experiments. (B) Immunoprecipitation in 293T cells that expressed Flag-tagged SMADs 1, 2, 3, 5, and 8 and HA-tagged CCT6A indicated that
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ments. (D) Western blot analysis of CCT6A in NSCLC cell lines using 2 primary lung epithelial cell lines (LE-1 and LE-2) and an immortalized lung epithelial
cell line (Beas2B) as a control showed that CCTEA was highly expressed in NSCLC cell lines, particularly in highly metastatic lines (PC3, H1650, and 95D)
(upper panel). Western blot analysis of CCT6A in NSCLC tissue using 2 normal lung tissue specimens as controls indicated that CCT6A was highly expressed
in patient-derived NSCLC tumors (lower panel). Representative blots were derived from 3 independent experiments. (E) Microarray-based transcription
profiling demonstrated that CCT6A overexpression significantly attenuated the expression of SMAD2-specific target genes, as well as target genes shared
by SMAD2 and SMAD3 in A543 cells. Box and whiskers plots represent the mRNA levels. **P < 0.01, by Student’s t test. (F) gPCR analysis of the expression
level of SMAD2- or SMAD3-specific and shared target genes in the indicated cells. Heatmaps represent the mRNA levels. (G) GSEA analysis indicated that
the CCT6A levels were inversely associated with the expression levels of SMAD2-specific targets. The defined “high” and “low” expression levels of CCT6A
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Figure 5. CCT6A promotes NSCLC cell survival and blocks SMAD2-SMAD4
interaction. (A-C) Analyses of colony formation in an adherent culture
(A), tumor sphere formation (B), and sub-G1 DNA content of detached
cells (C) for the indicated cells. Representative images were derived from

3 independent experiments. Error bars represent the mean + SD of 3
independent experiments. **P < 0.01, by ANOVA with Dunnett’s t test.
Scale bar: 100 pm. (D) Immunoprecipitation analysis indicated that CCT6A
attenuated the interaction of SMAD4 with both the WT and the phosphor-
ylation mimicry mutant SMAD2 (S2D). Representative blots were derived
from 3 independent experiments. (E and F) Immunoprecipitation analysis
showed that in A549 cells, CCT6A overexpression attenuated SMAD2-
SMAD4 interaction (E), whereas in PC9 cells, silencing of CCT6A enhanced
SMAD2-SMAD4 interaction (F). Representative blots (IB) were derived
from 3 independent experiments.

not in highly metastatic PC9 cells (Figure 3, A-C; and Supplemen-
tal Figure 3, D-F), which suggests that in highly metastatic NSCLC
cells, SMAD2 may function differently compared with non- or
low-metastatic cells.

In support of this notion, following TGF-B stimulation, the
expression levels of genes regulated by SMAD3 and co-occupied
by SMAD2 and SMAD3 were upregulated, whereas silencing of
SMAD3 reversed the alteration of these expression levels in both
low-metastatic and high-metastatic NSCLC cells. However, treat-
ment with TGF-B or silencing of SMAD2 expression in highly
metastatic PC9 or 95D cells did not change the SMAD2-mediated
transcriptional pattern, in contrast to the SMAD2-associated
expression profile changes induced by TGF-B treatment and
SMAD? silencing in low-metastatic NSCLC cells (Figure 3D and
Supplemental Figure 3G). Notably, in this context, further West-
ern blot analysis indicated that the expression levels of SMAD2
and SMAD3 as well as their phosphorylation statuses following
TGF-p stimulation were not significantly different among primary
cultured lung epithelial cells (LE-1 and LE-2), immortalized
bronchial epithelial cells (Beas2B), or low- (A549 and Calu3) or
high-metastatic (PC9 and 95D) NSCLC cells (Supplemental Fig-
ure 3H). These findings suggest that in highly metastatic NSCLC
cells with intact TGF-B signaling, unknown molecules yet to be
identified may act to interfere with the function of SMAD2, par-
ticularly following its activation by phosphorylation, such that the
suppressive effect of SMAD2 on cellular survival is inhibited.

CCT6A specifically interacts with SMAD2 and suppresses the
SMAD2-mediated transcriptional program. The biological effects
of R-SMADs may be modulated by their binding partners; thus,
we were prompted to identify proteins that interact with SMAD2
in highly metastatic NSCLC cells. To this end, we performed an
immunoprecipitation assay using ectopically expressed Flag-
tagged SMAD2 and SMAD3 in PC9 cells. In the subsequent mass
spectroscopic analysis, several previously reported and previously
unknown R-SMAD-interactive partners were identified. Among
these proteins, CCT6A, a previously reported but functionally
uncharacterized SMAD2-interactive protein, was highly enriched
in SMAD?2 precipitates (Figure 4A and Supplemental Figure 4A).
A further immunoprecipitation assay demonstrated that endog-
enous CCT6A interacted with SMAD2 specifically, but not with
other R-SMADs, i.e., SMADs 1, 3, 5, and 8 (Figure 4B and Supple-
mental Figure 4B). Moreover, an immunoprecipitation assay using
truncated SMAD?2 fragments indicated that CCT6A specifically
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interacted with the MH2 domain of SMAD?2 (Figure 4C). Western
blot detection of CCT6A in a series of NSCLC cell lines, using LE-1,
LE-2, and Beas2B cells as controls, indicated that CCT6A was sig-
nificantly overexpressed in NSCLC cells, particularly in those with
an increased metastatic ability, e.g., PC9, H1650, and 95D cells
(Figure 4D, upper panel). Accordingly, Western blot analysis of
CCT6A in NSCLC tissue specimens, using benign lung tissues as
controls, also demonstrated that CCT6A was highly expressed in
patient-derived NSCLC tissue (Figure 4D, lower panel).

To understand whether CCT6A affects the SMAD2-mediated
transcriptional program, microarray assays were used to profile
the mRNA expression pattern. In A549 cells, CCT6A overexpres-
sion significantly attenuated the transcription of SMAD2-specific
targets; however, it did not affect the expression of SMAD3-spe-
cific targets following the induction of TGF-f (Figure 4E). Quan-
titative PCR (qQPCR) assessment of representative SMAD2- or
SMAD3-specific or shared target genes further confirmed that
CCTG6A overexpression in A549 and Calu3 cells abrogated the
SMAD2-specific transcriptome in response to TGF-p stimulation,
whereas in PC9 and 95D cells, silencing of CCT6A relieved the
blockade of these genes (Figure 4F and Supplemental Figure 4C).
These findings support the notion that CCT6A expression is neg-
atively correlated with the expression of SMAD2-specific tran-
scripts, as further demonstrated by data presented in the MSKCC
NSCLC data sets (Figure 4G). Together, these findings indicate
that CCT6A acts as a specific negative regulator of SMAD2 func-
tion in NSCLC patients.

CCT6A promotes NSCLC cell survival and blocks SMAD2-
SMAD4 interaction. We subsequently aimed to study the functions
of CCT6A in NSCLC cell survival. Further analyses indicated that,
following TGF-B stimulation, CCT6A overexpression promoted
colony and tumor sphere formation (Figure 5, A and B; and Sup-
plemental Figure 5A), increased the side population (Supplemen-
tal Figure 5B), and reduced sensitivity to anoikis (Figure 5C and
Supplemental Figure 5C) in A549 cells, whereas silencing CCT6A
had opposite effects in PC9 cells (Figure 5, A-C, and Supplemen-
tal Figure 5, A-C). Furthermore, silencing SMAD2 in A549 NSCLC
cells engineered to ectopically overexpress CCT6A did not further
enhance CCT6A-promoted cell survival, and in PC9 cells, silenc-
ing SMAD2 markedly reversed the effects induced by CCT6A
silencing (Figure 5, A-C, and Supplemental Figure 5, A-C). This
line of evidence further supports the roles of CCT6A as an essen-
tial promoter of the TGF-B-induced aggressiveness of NSCLC
cells and as a negative regulator of SMAD2 functions.

To further elucidate the mechanism by which CCT6A specif-
ically blocks SMAD?2 function, we noted that in Beas2B and A549
cells, the total protein and phosphorylation levels of SMAD2 and
SMAD3 were barely changed after ectopic expression of CCT6A,
with or without TGF-f treatment (Supplemental Figure 5D). Fur-
thermore, an immunofluorescence assay showed that SMAD2
and CCT6A were always colocalized in the cytoplasm, even after
treatment with TGF-§ (Supplemental Figure 5E), indicating that
CCT6A may block the nuclear localization of SMAD2 and further
suppress the function of SMAD?2 as a transcriptional regulator. In
such a context, our data showed that CCT6A specifically inter-
acted with the MH2 domain of SMAD2 (Figure 4C), which has
been previously demonstrated to interact with SMAD4 and form
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Figure 6. CCT6A mediates TGF-B-promoted metastasis of NSCLC cells. (A-D) Mice were intravenously injected via tail vein with the indicated NSCLC cells.
Luciferase live-cell imaging (A and C), picric acid staining of metastatic foci, and H&E staining of lung tissue (B and D) revealed that CCT6A promoted survival
and metastasis of NSCLC cells with TGF-3 expression. Luciferase-labeled images of live mice at different time points following intravenous tail-vein injection
of the indicated NSCLC cells are presented in Supplemental Figure 6A. Representative images were from 2 independent experiments, with 6 mice per group
in each independent experiment. Scale bars: 100 um. (E-H) Mice were subcutaneously injected into inguinal folds with the indicated NSCLC cells. Luciferase
live-cell imaging (E and G), picric acid staining of metastatic foci, and H&E staining of lung tissue (F and H) showed that silencing CCTEA diminished the
metastasis potential of NSCLC cells. Luciferase-labeled images of live mice at different time points following subcutaneous injection into inguinal folds of the
indicated NSCLC cells are presented in Supplemental Figure 6L. Representative images were from 2 independent experiments, with 6 mice per group in each
independent experiment. Scale bars: 100 um. (I-K) Tumor sphere formation assays with the indicated NSCLC cells (I and J) and luciferase live-cell images of
mice intravenously injected via the tail vein with a low dose (5 x 10%) of NSCLC cells (n = 6 per group) on day 30 (J and K) suggested that CCT6A promoted the
survival and metastasis of NSCLC cells in a TGF- signaling-dependent manner. Error bars represent the mean + SD. **P < 0.01, by Student’s t test.
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a functional R-SMAD-SMAD4 complex in response to TGF-B
stimulation (38, 39); thus, we aimed to determine whether CCT6A
affected the interaction between SMAD4 and SMAD?2. As shown
in Figure 5D, CCT6A interacted with both WT and the phosphory-
lation mimicry mutant (40) of SMAD2 (S2D), which has high bind-
ing affinity for SMAD4. Importantly, when CCT6A was overex-
pressed, the interaction between SMAD2 (S2D) and SMAD4 was
drastically abrogated (Figure 5D); this result was confirmed by the
finding that in A549 cells (with a low endogenous CCT6A level),
CCT6A overexpression markedly decreased SMAD2-associated
SMAD4 following treatment with TGF-B (Figure 5E). In contrast,
in PC9 cells, which express a high level of CCT6A, silencing of
CCT6A increased SMAD2-associated SMAD4 in response to
TGF-B stimulation (Figure 5F), which indicates that CCT6A may
block SMAD2-induced transcription by blocking the formation of
a functional SMAD2-SMAD4 complex.

CCT6A mediates TGF-f-promoted metastasis of NSCLC cells.
We subsequently investigated whether CCT6A is essential for
TGF-B-induced metastasis in vivo. The animal studies showed
that in A549 cells, CCT6A overexpression promoted, whereas
silencing of CCT6A in PC9 cells inhibited, TGF-p-induced metas-
tasis (Figure 6, A-D, and Supplemental Figure 6, A, E, G-1, and K).
Accordingly, the survival time of mice injected with A549 cells
overexpressing CCT6A was significantly (P < 0.01) shortened,
whereas injection with CCT6A-silenced PC9 cells prolonged the
survival of tumor-bearing mice (Supplemental Figure 6, B, F, and ).
Similarly, in a spontaneous metastasis model, silencing of CCT6A
also significantly inhibited the dissemination of tumor cells and
improved animal survival (Figure 6, E-H, and Supplemental Fig-
ure 6, L-N). In addition, in an immunocompetent mouse model
(C57BL/6 mice), on day 50 after tail-vein injection of shVector-,
CCT6A silenced-, or CCT6A- and SMAD2-cosilenced LLC cells,
together with or without ectopic expression of TGF-B1, lucifer-
ase live imaging, picric acid staining of metastatic lesions, and
Kaplan-Meier plot analysis of mouse survival time demonstrated
that silencing CCT6A inhibited TGF-B-induced metastasis and
prolonged the survival of the tumor cell-injected mice, whereas
silencing SMAD2 in CCT6A-knocked-down LLC cells could sig-
nificantly (P < 0.01) reverse the metastasis-inhibiting effect of
CCT6A silencing (Supplemental Figure 6, 0-Q).

Furthermore, silencing SMAD2 in A549 cells ectopically over-
expressing CCT6A could not further enhance CCT6A-promoted
tumor cell metastasis, and in CCT6A-silenced PC9 cells, silencing
SMAD2 markedly promoted TGF-B-induced cancer cell metasta-
sis and shortened the survival time of mice transplanted with PC9
cells, with CCT6A and SMAD?2 jointly silenced (Supplemental Fig-
ure 6, C-K). Meanwhile, comparison of the biological outcomes
between knockdown of SMAD2 alone (Figures 2 and 3) and togeth-
er with overexpression or knockdown of CCT6A (Figure 5 and 6)
showed that when SMAD2 was silenced, ectopically overexpress-
ing or silencing CCT6A had no effect on cell survival or metastasis
of the NSCLC cells, further suggesting that CCT6A is a negative
regulator of SMAD?2 and that the metastasis-promoting function
of CCT6A is SMAD2 dependent (Supplemental Figure 6, R and S).

The previously described results demonstrated that several
key factors of Wnt/B-catenin signaling were transcriptionally reg-
ulated by SMAD2 and SMAD3 following TGF- stimulation. Con-
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sistently, we found that blockade of the Wnt/B-catenin signaling
pathway with dominant-negative transcription factor 4 (TCF4)
attenuated CCT6A-enhanced cancer cell survival and metasta-
sis, and the constitutively active form of B-catenin (33Y mutant)
reversed the cell death phenotype induced by silencing of CCT6A
in vitro and promoted TGF-B-stimulated metastasis in vivo (Fig-
ure 6, I-K, and Supplemental Figure 6, T and U). Taken together,
these findings support the notion that CCT6A sustains the onco-
genic arm of TGF-p signaling and acts as a strong promoter of
TGF-p-induced metastasis in vivo.

High CCTG6A levels are associated with inhibition of the
SMAD2-mediated transcriptional program in clinical NSCLC spec-
imens. To understand whether CCT6A expression is associated
with TGF-B-promoted metastasis in NSCLC patients, we analyzed
CCT6A levels in the MSKCC NSCLC data sets 1 and 2. Consistent
with the previously identified prometastatic function of CCT6A
in TGF-B-stimulated tumor cells, we determined that CCT6A
levels were correlated with a high metastasis potential in patients
with high TGF- levels, whereas in patients with low TGF-f lev-
els, CCT6A expression was not associated with NSCLC metasta-
sis (Figure 7, A and B). To further address whether CCT6A levels
also correlate with the expression of TGF-B signaling transcrip-
tional targets in NSCLC patients, we performed immunohisto-
chemical staining of TGF-B, CCT6A, adenomatous polyposis coli
(APC), dickkopf WNT signaling pathway inhibitor 3 (DKK3), and
Frizzledl in our collection of NSCLC specimens. In this cohort
of patients, as demonstrated by imaging and statistical analyses
across all 216 specimens, CCT6A expression was negatively asso-
ciated with the expression of APC and DKK3, two transcriptional
targets regulated by SMAD2, only in the specimens with high
TGF-B levels. In contrast, the association between CCT6A levels
and these TGF-B-regulated genes was not significant in the speci-
mens with low TGF-f levels. Notably, Frizzled1 expression, which
is regulated by SMAD3, did not correlate with CCT6A expression,
regardless of TGF-p levels (Figure 7, C and D). This line of evi-
dence supports the notion that high CCT6A expression levels are
key to the metastasis-associated suppression of SMAD2 function
and the high metastatic potential in NSCLC patients.

Discussion

SMAD2 mediates a transcriptional program distinct from SMAD3
and plays a tumor-suppressive role in NSCLC. Our current study
using multiple NSCLC cell lines, animal models, and clinical spec-
imens indicates that in NSCLC, the suppression of SMAD2, with
the retention of SMAD3 function, switches TGF-B-induced tran-
scriptional responses toward a prometastatic state. Notably, the
activation of TGF-p signaling has been demonstrated in NSCLC
tumors and cell lines, and a malignant phenotype of cancer cells,
including cellular migration and invasion, angiogenesis, stem
cell-like properties, and metastasis, has been linked to aberrant
activation of TGF-p signaling in cancers (41, 42). Following stim-
ulation with TGF-B, SMAD2 and SMAD3, two of the most import-
ant R-SMADs in the canonical TGF-f signaling pathway, are phos-
phorylated by TGF- receptor 1 and interact with SMAD4 to form a
molecular complex, which subsequently translocates to the nucle-
us and regulates the transcription of downstream target genes (5,
6, 10, 11). This cascade of TGF-p signaling has been identified in
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Figure 7. High CCT6A levels are associated with inhibition of the
SMAD2-mediated transcriptional program in clinical NSCLC specimens.
(A and B) Kaplan-Meier survival analysis of data collected from MSKCC
NSCLC data sets 1and 2 indicated that CCT6A expression levels were pos-
itively correlated with metastasis in patients with high TGF-3 expression
levels. (C and D) Representative images (C) of immunohistochemical stain-
ing for TGF-B, CCT6A, APC, DKK3, and Frizzled1 and statistical analysis
across 216 NSCLC specimens (D) show that CCT6A expression was nega-
tively associated with expression of APC and DKK3 only in specimens with
high TGF-p levels and that Frizzled1 expression was not correlated with
CCT6A expression, regardless of TGF-f levels. “High” and “low” expression
levels of each protein were stratified by the median optical density (OD) of
staining in all specimens. Scale bar: 100 um. *P < 0.05, by 1-way ANOVA.

various types of cancers; however, the biological functions and
target genes of SMAD2 and/or SMAD3 in NSCLC have remained
largely unknown, and it is unclear whether SMAD2 and SMAD3
mediate similar or distinct biological functions in NSCLC cells.
In the current study, the use of antibodies that specifically rec-
ognized SMAD2 or SMAD3 in ChIP-seq analyses led to the find-
ings that substantial numbers of SMAD2- and SMAD3-binding
sites are distinct in NSCLC cells and that the targeted genes
of these 2 R-SMADs were different; however, a small number
(~20%) of these binding sites are shared by SMAD2 and SMAD3.
Our further analyses of target genes using whole-genome strat-
egies indicated that SMAD3 mainly controls the transcription
of developmental regulators, whereas SMAD2 target genes
predominately govern apoptosis and differentiation; the genes
jointly regulated by both SMAD2 and SMAD3 are mainly house-
keeping genes involved in protein synthesis. In strong agreement
with the results of previously described studies, further in vivo and
in vitro experimental data demonstrated that silencing of SMAD2
promoted, while silencing of SMAD3 suppressed, the survival of
NSCLC cells and metastasis following TGF-p stimulation. These
findings suggest that SMAD2 and SMAD3 have opposite functions,
with SMAD2 predominately acting as a tumor suppressor in the
cancer cell. In this context, SMAD2 may be responsible, or in part
responsible, for the tumor-suppressive effect of TGF-p signaling;
however, the underlying mechanism has remained largely unchar-
acterized (21, 22, 27). Thus, the current study not only uncovered
a novel mechanism that underlies the seemingly contradictory
dual roles of TGF-f signaling as both an antitumorigenic and pro-
metastatic pathway but also identified that 2 R-SMADs, SMAD2
and SMAD3, likely constitute a core switch that drives TGF-p sig-
naling from its tumor-suppressive role toward its prometastatic
function. Therefore, the practical development of antimetastatic
strategies against NSCLC progression should be directed toward
strategies that effectively inhibit SMAD3 and its governed tran-
scriptional program and functionally maintain the transcriptional
activity of SMAD2.

Abrogation of the SMAD2-mediated tumor-suppressive arm of
TGF-f signaling during cancer progression. In light of the finding
that the SMAD2-SMAD3 switch plays a key role in the transition
of TGF-p signaling from a tumor-suppressive to a metastasis-
promoting factor, as previously discussed, it is of substantial
interest to elucidate how the SMAD2-triggered tumor-suppres-
sive transcriptional program is inhibited while the transacti-
vating function of oncogenic SMAD3 remains active. Notably,
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in colon and pancreatic cancers, genetic alterations in SMAD2
and SMAD4 gene loci, such as genomic deletions, inactivat-
ing mutations, and heterozygosity, are frequently detected
and have been demonstrated to abrogate SMAD2-dependent
TGF-B signaling (28, 43, 44). However, in tumors with an intact
TGF-p signaling pathway, including NSCLC and breast cancer,
genomic alterations of the core components in the TGF-f signal-
ing cascade have been detected in only 2% to 10% of patients
(28), which strongly indicates that other endogenous factors
highly expressed in cancer cells may contribute to inactivation
of the SMAD2-mediated arm of TGF-B signaling. Moreover,
how SMAD2-mediated transcription is overcome so that the
tumor-suppressive role of TGF-p is blocked and the metastasis
and progression of NSCLC may subsequently proceed following
stimulation by TGF-B remains unknown. CCT6A is a subunit of
chaperonin containing TCP1 complex, and it has been reported
to be functionally related with immortalization and tumorige-
nicity of human mesenchymal stem cells and MMP3-dependent
granule cell migration in neurite outgrowth and neuronal migra-
tion (45, 46). The expression levels of CCT6A had been found
to be upregulated in various tumor types, including NSCLC, gli-
oma, melanoma, colon cancer, and testicular cancer, and such
an upregulation might be predominantly due to amplification
of chromosomal region 7p11.2 (47-51). Nonetheless, thus far the
functional significance of CCT6A in cancer development remains
unclear. Our findings that CCT6A is overexpressed in NSCLC
and that as a SMAD2-binding protein, CCT6A plays an essen-
tial role in diminishing the transactivating function of SMAD2,
identify what we believe to be a novel mechanism to explain the
abrogation of the SMAD2-mediated tumor-suppressive effect of
TGF-B. Notably, we demonstrated that in NSCLC, CCT6A acts
to inhibit SMAD2-SMAD4 interaction and interrupt the biolog-
ical function of the SMAD2-SMAD4 complex in regulating the
transcription of downstream target genes and that the suppres-
sion of CCT6A leads to diminished TGF-B-induced metastasis,
which provides a mode of action to explain the cancellation of
the tumor-suppressive function of SMAD?2 in cancer cells, such
as most NSCLC cells, that possess intact SMAD2-dependent
TGF-p signaling. Interestingly, the amino acid sequence of the
MH2 domain of SMAD2, which we demonstrated specifically
interacts with CCT6A, is fairly similar to the MH2 domain of
SMAD3. Therefore, as our data clearly demonstrate that CCT6A
binds only with SMAD2 and not with SMAD3, it is of substantial
interest to further elucidate whether the differential specificity
of CCT6A-SMAD? interaction is determined by the structural
difference between SMAD2 and SMAD3 or, alternatively, by oth-
er protein-binding partners. Studies that aim to understand this
question are currently underway in our laboratory.

CCT6A and SMAD3 may represent targets for the suppression of
TGF-pB-promoted metastasis in NSCLC. Over decades, substantial
efforts have been made to develop agents that target the TGF-
pathway as an antimetastasis strategy. Agents of this nature
include anti-TGF-B-neutralizing antibodies, such as 1D11, which
have been demonstrated to inhibit metastasis in breast cancer
models derived from the 4T1 (52) and MDA-MB-231 breast can-
cer cell lines (53); the TGFBRI inhibitors SB-431542, Ki26894,
and LY2157299; and the TGFBR1/2 dual inhibitor LY2109761,
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which was shown to suppress metastasis in breast, colon, and
pancreatic cancers in experimental animal models (36, 54-58).
The antimetastatic properties of these agents have been demon-
strated in various experimental settings; however, their effects
on the overall survival of tumor-bearing animals are highly vari-
able and appear to be context dependent. Highly variable respon-
siveness in a clinical trial with the TGF-p-neutralizing antibody
GC-1008 further highlighted the challenges of a TGF-p-targeted
strategy in humans (59). These studies warn that targeting the
TGF-B pathway by inhibiting upstream signaling components,
such asligands and receptors, may not achieve effective blockade
of the prometastatic arm of TGF- signaling. Our current finding
in NSCLC that TGF-B-mediated metastasis and tumor aggres-
siveness rely on the specific suppression of SMAD2, with SMAD3
remaining functionally intact, provides insight in this area.
According to our data, silencing SMAD3 or the specific SMAD2
blocker CCT6A resulted in efficient suppression of metastasis in
vivo and significantly prolonged the survival of tumor-bearing
mice, which thus implicates a new potential strategy for specif-
ically targeting the tumor-promoting branch of TGF-f signaling
in cancer. In this context, it would be of substantial interest to
determine whether optimal and potent antimetastatic effica-
cies may be achieved by combining anti-CCT6A or anti-SMAD3
agents with TGF-p inhibitors.

Methods

Tissue specimens and ethical approval. A total of 216 paraffin-embedded,
archived NSCLC specimens that had been clinically and histopatho-
logically diagnosed at Sun Yat-Sen Memorial Hospital and Sun Yat-
Sen University Cancer Center were subjected to immunostaining.

ChIP-seq analysis. A total of 5 x 107 A549 cells were used for each
ChIP assay. The ChIP procedure was performed according to a previ-
ously described protocol (60), using 10 pg anti-SMAD2, -SMAD?3, and
-H3K4me3 antibodies (Supplemental Table 2). Enriched DNA fragments
were subjected to library preparation and next-generation sequencing
with Annoroad Gene Technology using a HiSeq 2000 (Illumina). Short
reads were mapped to the hgl9 reference genome using Bowtie2 (61),
and ChIP peaks were called using model-based analysis of ChIP-seq 14
(MACS 14), with the input sample as the control (62). Enrichment heat-
maps that surrounded the ChIP peaks were generated using seqMINER
(63), and signal plotting of individual genes was generated using the
Integrated Genome Viewer (64). The raw sequencing data from the
ChlIP-seq analysis performed in the current study can be downloaded
from the NCBI’s Sequence Read Archive (SRA) using accession numbers
SR692803 and SRS976037.

Tumor xenografts and metastasis models. A tail-vein injection mod-
el for metastasis was generated by injecting 2 x 10° A549 or 1 x 10°
PC9 cells into the tail veins of nude mice. Spontaneous metastasis
models were generated by subcutaneously injecting 1 x 106 PC9 or 5
% 10% LLC cells into the inguinal folds of nude mice. Mice that carried
tumor xenografts were monitored using the IVIS Spectrum In Vivo
Imaging System (PerkinElmer). Image calibration and visualization
were performed using Living Image 4.2 software (PerkinElmer).

Immunoprecipitation and mass spectrometric analysis. PC9 cells (3 x
10), transfected with Flag-tagged SMAD2, SMAD3, or pCDNA3 vec-
tor, were lysed with lysis buffer (150 mM NaCl, 10 mM HEPES, pH 7.4,
and 1% Nonidet P-40) and incubated with anti-Flag affinity agarose
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(Sigma-Aldrich) overnight at 4°C. Beads that contained affinity-bound
proteins were washed 6 times with immunoprecipitation wash buffer
(150 mM NaCl, 10 mM HEPES, pH 7.4, and 0.1% Nonidet P-40). Fol-
lowing protein separation by SDS-PAGE and Coomassie blue staining,
the SMAD2/3-interacting bands were subjected to mass spectrometric
peptide sequence analysis.

Microarray assay and data analysis. Total RNA isolated from A549 cells
with SMAD2 or SMAD3 silenced, and the corresponding vector control
cells were subjected to microarray analysis by the Shanghai Biochip Cor-
poration using the Agilent Technologies 4 x 44k Human Genome Array
Expression quantification data and normalized without median shift. The
subsequent GO enrichment analysis was performed using GeneSpring
GX (Agilent Technologies). Gene set enrichment analysis (GSEA) was
performed using GSEA 2.09 (65). Expression profile data from micro-
array analysis performed in the current study can be downloaded from the
NCBI’s Gene Expression Omnibus (GEO)database (GEO GSE61132).

The methods of cell line and primary cell culture, colony forma-
tion assay, three-dimension spheroid invasion assay, sphere forma-
tion assays, flow cytometric analysis, anoikis assay, RNA extraction,
reverse transcription (RT), qPCR, plasmid construction and immuno-
histochemistry (IHC) are described in the Supplemental Methods, as
well as Supplemental Table 1.

Statistics. All statistical analyses except the microarray data were
performed using the PASW Statistics 18 (SPSS Inc.) software package.
Comparisons between any 2 sample groups were performed using a
Student’s ¢ test, while analyses comparing multiple treatments with
a control group were performed using ANOVA with Dunnett’s ¢ test.
Data are presented as the mean * SD. A P value of less than 0.05 was
considered statistically significant.

Study approval. All experimental procedures and use of NSCLC
donors’ samples were approved by the IACUC of Sun Yat-sen Univer-
sity. Donors provided prior written informed consent.
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